Nuprl Lemma : test-hidden-ap
∀[A,B,C:Type]. (((A
⇒ A)
⇒ (B ∨ C))
⇒ (C
⇒ B)
⇒ B)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
or: P ∨ Q
,
prop: ℙ
Lemmas referenced :
or_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
rename,
sqequalHypSubstitution,
independent_functionElimination,
hypothesis,
hypothesisEquality,
unionElimination,
thin,
functionEquality,
sqequalRule,
cut,
lemma_by_obid,
isectElimination,
because_Cache,
universeEquality
Latex:
\mforall{}[A,B,C:Type]. (((A {}\mRightarrow{} A) {}\mRightarrow{} (B \mvee{} C)) {}\mRightarrow{} (C {}\mRightarrow{} B) {}\mRightarrow{} B)
Date html generated:
2016_05_15-PM-03_19_20
Last ObjectModification:
2015_12_27-PM-01_03_45
Theory : general
Home
Index