Step
*
2
2
1
of Lemma
uncurry_wf
1. T : Type
2. n : ℤ
3. 0 < n
4. ∀[A:ℕn - 1 ⟶ Type]. ∀[f:funtype(n - 1;A;T)].  (uncurry(n - 1;f) ∈ (i:ℕn - 1 ⟶ A[i]) ⟶ T)
5. ¬(n = 0 ∈ ℤ)
6. A : ℕn ⟶ Type
7. f : (A 0) ⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - i)) ⟶ t))
8. a : i:ℕn ⟶ A[i]
⊢ primrec(n - 1;f;λi,z. (z (a i))) (a (n - 1)) ∈ T
BY
{ xxx(InstHyp [⌜λi.(A (i + 1))⌝;⌜f (a 0)⌝] 4⋅ THENA Auto')xxx }
1
1. T : Type
2. n : ℤ
3. 0 < n
4. ∀[A:ℕn - 1 ⟶ Type]. ∀[f:funtype(n - 1;A;T)].  (uncurry(n - 1;f) ∈ (i:ℕn - 1 ⟶ A[i]) ⟶ T)
5. ¬(n = 0 ∈ ℤ)
6. A : ℕn ⟶ Type
7. f : (A 0) ⟶ primrec(n - 1;T;λi,t. ((A (n - 1 - i)) ⟶ t))
8. a : i:ℕn ⟶ A[i]
9. uncurry(n - 1;f (a 0)) ∈ (i:ℕn - 1 ⟶ λi.(A (i + 1))[i]) ⟶ T
⊢ primrec(n - 1;f;λi,z. (z (a i))) (a (n - 1)) ∈ T
Latex:
Latex:
1.  T  :  Type
2.  n  :  \mBbbZ{}
3.  0  <  n
4.  \mforall{}[A:\mBbbN{}n  -  1  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n  -  1;A;T)].    (uncurry(n  -  1;f)  \mmember{}  (i:\mBbbN{}n  -  1  {}\mrightarrow{}  A[i])  {}\mrightarrow{}  T)
5.  \mneg{}(n  =  0)
6.  A  :  \mBbbN{}n  {}\mrightarrow{}  Type
7.  f  :  (A  0)  {}\mrightarrow{}  primrec(n  -  1;T;\mlambda{}i,t.  ((A  (n  -  1  -  i))  {}\mrightarrow{}  t))
8.  a  :  i:\mBbbN{}n  {}\mrightarrow{}  A[i]
\mvdash{}  primrec(n  -  1;f;\mlambda{}i,z.  (z  (a  i)))  (a  (n  -  1))  \mmember{}  T
By
Latex:
xxx(InstHyp  [\mkleeneopen{}\mlambda{}i.(A  (i  +  1))\mkleeneclose{};\mkleeneopen{}f  (a  0)\mkleeneclose{}]  4\mcdot{}  THENA  Auto')xxx
Home
Index