Nuprl Lemma : uncurry_wf

[T:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[f:funtype(n;A;T)].  (uncurry(n;f) ∈ (i:ℕn ⟶ A[i]) ⟶ T)


Proof




Definitions occuring in Statement :  uncurry: uncurry(n;f) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B decidable: Dec(P) or: P ∨ Q uncurry: uncurry(n;f) funtype: funtype(n;A;T) so_apply: x[s] subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) subtract: m less_than: a < b squash: T true: True nat_plus: + so_lambda: λ2x.t[x]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf funtype_wf int_seg_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf primrec0_lemma primrec-unroll eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf subtype_base_sq decidable__equal_int intformeq_wf int_formula_prop_eq_lemma false_wf lelt_wf primrec_wf int_seg_properties decidable__lt add-member-int_seg2 subtype_rel-equal itermAdd_wf int_term_value_add_lemma add-associates minus-one-mul add-swap add-commutes itermMultiply_wf int_term_value_mul_lemma top_wf nat_plus_wf nat_plus_properties add-subtract-cancel primrec-wf-nat-plus sqequal-wf-base set_subtype_base subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity functionExtensionality applyEquality productElimination functionEquality universeEquality dependent_set_memberEquality because_Cache unionElimination baseApply closedConclusion baseClosed equalityElimination impliesFunctionality instantiate addEquality imageElimination multiplyEquality minusEquality imageMemberEquality sqequalIntensionalEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n;A;T)].    (uncurry(n;f)  \mmember{}  (i:\mBbbN{}n  {}\mrightarrow{}  A[i])  {}\mrightarrow{}  T)



Date html generated: 2018_05_21-PM-08_02_00
Last ObjectModification: 2017_07_26-PM-05_38_45

Theory : general


Home Index