Step
*
3
1
of Lemma
mul-polynom_wf
1. k : ℕ
2. ∀k:ℕk. ∀[n:ℕ]. ∀[p,q:polyform(n)]. (((tree_size(p) + tree_size(q)) ≤ k)
⇒ (mul-polynom(p;q) ∈ polyform(n)))
3. n : ℕ
4. left : tree(ℤ)
5. p2 : tree(ℤ)
6. ((↑(ispolyform(left) (n - 1))) ∧ (↑(ispolyform(p2) n))) ∧ 0 < n
7. q1 : ℤ
8. True
9. (((1 + tree_size(left)) + tree_size(p2)) + 0) ≤ k
10. mul-polynom(left;tree_leaf(q1)) ∈ polyform(n - 1)
11. mul-polynom(p2;tree_leaf(q1)) ∈ polyform(n)
⊢ if q1=0
then polyconst(0)
else if q1=1
then tree_node(left;p2)
else eval a = mul-polynom(left;tree_leaf(q1)) in
eval b = mul-polynom(p2;tree_leaf(q1)) in
tree_node(a;b) ∈ polyform(n)
BY
{ ((MemTypeHD (-2) THENA Auto) THEN (MemTypeHD (-1) THENA Auto) THEN All (Fold `member`) THEN Auto) }
Latex:
Latex:
1. k : \mBbbN{}
2. \mforall{}k:\mBbbN{}k
\mforall{}[n:\mBbbN{}]. \mforall{}[p,q:polyform(n)].
(((tree\_size(p) + tree\_size(q)) \mleq{} k) {}\mRightarrow{} (mul-polynom(p;q) \mmember{} polyform(n)))
3. n : \mBbbN{}
4. left : tree(\mBbbZ{})
5. p2 : tree(\mBbbZ{})
6. ((\muparrow{}(ispolyform(left) (n - 1))) \mwedge{} (\muparrow{}(ispolyform(p2) n))) \mwedge{} 0 < n
7. q1 : \mBbbZ{}
8. True
9. (((1 + tree\_size(left)) + tree\_size(p2)) + 0) \mleq{} k
10. mul-polynom(left;tree\_leaf(q1)) \mmember{} polyform(n - 1)
11. mul-polynom(p2;tree\_leaf(q1)) \mmember{} polyform(n)
\mvdash{} if q1=0
then polyconst(0)
else if q1=1
then tree\_node(left;p2)
else eval a = mul-polynom(left;tree\_leaf(q1)) in
eval b = mul-polynom(p2;tree\_leaf(q1)) in
tree\_node(a;b) \mmember{} polyform(n)
By
Latex:
((MemTypeHD (-2) THENA Auto) THEN (MemTypeHD (-1) THENA Auto) THEN All (Fold `member`) THEN Auto)
Home
Index