Nuprl Lemma : mul-polynom_wf
∀[n:ℕ]. ∀[p,q:polyform(n)].  (mul-polynom(p;q) ∈ polyform(n))
Proof
Definitions occuring in Statement : 
mul-polynom: mul-polynom(p;q), 
polyform: polyform(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
polyform: polyform(n), 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
tree_leaf: tree_leaf(value), 
assert: ↑b, 
tree_size: tree_size(p), 
mul-polynom: mul-polynom(p;q), 
tree_leaf?: tree_leaf?(v), 
pi1: fst(t), 
tree_leaf-value: tree_leaf-value(v), 
tree_node-left: tree_node-left(v), 
pi2: snd(t), 
tree_node-right: tree_node-right(v), 
bfalse: ff, 
bnot: ¬bb, 
tree_node: tree_node(left;right), 
less_than: a < b, 
polyconst: polyconst(k), 
ispolyform: ispolyform(p), 
tree_ind: tree_ind, 
true: True, 
polynom: polynom(n), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
cand: A c∧ B
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
tree_size_wf, 
polyform_wf, 
nat_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
ispolyform_leaf_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
ispolyform_node_lemma, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
add_nat_wf, 
add-is-int-iff, 
polynom_wf, 
assert_wf, 
ispolyform_wf, 
value-type-has-value, 
int-value-type, 
band_wf, 
lt_int_wf, 
tree_leaf_wf, 
set_subtype_base, 
int_subtype_base, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_lt_int, 
tree_node_wf, 
tree_wf, 
valuetype__tree, 
le_weakening2, 
value-type-polyform, 
polyconst_wf, 
assert_elim, 
add-polynom_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
because_Cache, 
productElimination, 
unionElimination, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
isect_memberFormation, 
promote_hyp, 
tokenEquality, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
callbyvalueReduce, 
multiplyEquality, 
productEquality, 
imageMemberEquality, 
imageElimination, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)].    (mul-polynom(p;q)  \mmember{}  polyform(n))
Date html generated:
2017_10_01-AM-08_33_09
Last ObjectModification:
2017_05_03-AM-11_13_41
Theory : integer!polynomial!trees
Home
Index