Nuprl Lemma : valuetype__tree
∀[E:Type]. value-type(tree(E))
Proof
Definitions occuring in Statement : 
tree: tree(E), 
value-type: value-type(T), 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
tree: tree(E), 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
nat: ℕ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
value-type: value-type(T), 
has-value: (a)↓, 
prop: ℙ
Lemmas referenced : 
set-value-type, 
treeco_wf, 
has-value_wf-partial, 
nat_wf, 
le_wf, 
int-value-type, 
treeco_size_wf, 
value-type_functionality, 
ifthenelse_wf, 
eq_atom_wf, 
treeco-ext, 
product-value-type, 
equal-wf-base, 
tree_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
because_Cache, 
productEquality, 
atomEquality, 
instantiate, 
tokenEquality, 
universeEquality, 
voidEquality, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomSqleEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[E:Type].  value-type(tree(E))
Date html generated:
2017_10_01-AM-08_30_37
Last ObjectModification:
2017_05_02-PM-02_37_37
Theory : tree_1
Home
Index