Nuprl Lemma : valuetype__tree

[E:Type]. value-type(tree(E))


Proof




Definitions occuring in Statement :  tree: tree(E) value-type: value-type(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree: tree(E) so_lambda: λ2x.t[x] uimplies: supposing a nat: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q value-type: value-type(T) has-value: (a)↓ prop:
Lemmas referenced :  set-value-type treeco_wf has-value_wf-partial nat_wf le_wf int-value-type treeco_size_wf value-type_functionality ifthenelse_wf eq_atom_wf treeco-ext product-value-type equal-wf-base tree_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality independent_isectElimination intEquality natural_numberEquality because_Cache productEquality atomEquality instantiate tokenEquality universeEquality voidEquality productElimination independent_functionElimination isect_memberEquality axiomSqleEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[E:Type].  value-type(tree(E))



Date html generated: 2017_10_01-AM-08_30_37
Last ObjectModification: 2017_05_02-PM-02_37_37

Theory : tree_1


Home Index