Nuprl Lemma : polyconst_wf
∀[k,n:ℤ].  (polyconst(k) ∈ polynom(n))
Proof
Definitions occuring in Statement : 
polyconst: polyconst(k), 
polynom: polynom(n), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
polynom: polynom(n), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
polyconst: polyconst(k), 
implies: P ⇒ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
tree_leaf?: tree_leaf?(v), 
eq_atom: x =a y, 
pi1: fst(t), 
tree_leaf: tree_leaf(value), 
btrue: tt, 
true: True, 
prop: ℙ, 
ispolyform: ispolyform(p), 
tree_ind: tree_ind, 
polyform: polyform(n)
Lemmas referenced : 
assert_wf, 
poly-int_wf, 
tree_leaf_wf, 
ispolyform_wf, 
tree_leaf?_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
natural_numberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
applyEquality, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[k,n:\mBbbZ{}].    (polyconst(k)  \mmember{}  polynom(n))
Date html generated:
2017_10_01-AM-08_32_22
Last ObjectModification:
2017_05_02-PM-00_39_20
Theory : integer!polynomial!trees
Home
Index