Nuprl Lemma : cal-point

[T,eq,P:Top].
  (Point(constrained-antichain-lattice(T;eq;P)) {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P a)} )


Proof




Definitions occuring in Statement :  constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) lattice-point: Point(l) fset-antichain: fset-antichain(eq;ac) fset-all: fset-all(s;x.P[x]) fset: fset(T) assert: b uall: [x:A]. B[x] top: Top and: P ∧ Q set: {x:A| B[x]}  apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-point: Point(l) record-select: r.x constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis axiomSqEquality lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq,P:Top].
    (Point(constrained-antichain-lattice(T;eq;P))  \msim{}  \{ac:fset(fset(T))| 
                                                                                                      (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P  a)\}  )



Date html generated: 2020_05_20-AM-08_47_54
Last ObjectModification: 2016_01_15-PM-03_35_15

Theory : lattices


Home Index