Nuprl Lemma : free-dlwc-meet

[T,eq,a,b,cs:Top].  (a ∧ glb(λs.fset-contains-none(eq;s;x.cs[x]);a;b))


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-meet: a ∧ b fset-constrained-ac-glb: glb(P;ac1;ac2) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-meet: a ∧ b constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomSqEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq,a,b,cs:Top].    (a  \mwedge{}  b  \msim{}  glb(\mlambda{}s.fset-contains-none(eq;s;x.cs[x]);a;b))



Date html generated: 2020_05_20-AM-08_48_28
Last ObjectModification: 2015_12_28-PM-01_58_48

Theory : lattices


Home Index