Nuprl Lemma : free-dlwc-point

[T,eq,Cs:Top].
  (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) {ac:fset(fset(T))| 
                                                              (↑fset-antichain(eq;ac))
                                                              ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} )


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-point: Point(l) fset-antichain: fset-antichain(eq;ac) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-all: fset-all(s;x.P[x]) fset: fset(T) assert: b uall: [x:A]. B[x] top: Top so_apply: x[s] and: P ∧ Q set: {x:A| B[x]}  sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-point: Point(l) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomSqEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq,Cs:Top].
    (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) 
    \msim{}  \{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))\}  )



Date html generated: 2020_05_20-AM-08_48_18
Last ObjectModification: 2015_12_28-PM-01_59_03

Theory : lattices


Home Index