Step
*
2
1
1
of Lemma
lattice-extend-meet
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀[s:fset(fset(T))]. (λls./\(ls)"(λxs.f"(xs)"(s)) = λx./\(f"(x))"(s) ∈ fset(Point(L)))
⊢ \/(λls./\(ls)"(λxs.f"(xs)"(a))) ∧ \/(λls./\(ls)"(λxs.f"(xs)"(b))) 
  ≤ \/(λls./\(ls)"(λxs.f"(xs)"(f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(b)))))
BY
{ Subst' λxs.f"(xs)"(f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(b)))
= f-union(deq-fset(eqL);deq-fset(eqL);λxs.f"(xs)"(a);as.λbs.as ⋃ bs"(λxs.f"(xs)"(b)))
∈ fset(fset(Point(L))) 0 }
1
.....equality..... 
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀[s:fset(fset(T))]. (λls./\(ls)"(λxs.f"(xs)"(s)) = λx./\(f"(x))"(s) ∈ fset(Point(L)))
⊢ λxs.f"(xs)"(f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(b)))
= f-union(deq-fset(eqL);deq-fset(eqL);λxs.f"(xs)"(a);as.λbs.as ⋃ bs"(λxs.f"(xs)"(b)))
∈ fset(fset(Point(L)))
2
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀[s:fset(fset(T))]. (λls./\(ls)"(λxs.f"(xs)"(s)) = λx./\(f"(x))"(s) ∈ fset(Point(L)))
⊢ \/(λls./\(ls)"(λxs.f"(xs)"(a))) ∧ \/(λls./\(ls)"(λxs.f"(xs)"(b))) 
  ≤ \/(λls./\(ls)"(f-union(deq-fset(eqL);deq-fset(eqL);λxs.f"(xs)"(a);as.λbs.as ⋃ bs"(λxs.f"(xs)"(b)))))
3
.....wf..... 
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
8. ∀[s:fset(fset(T))]. (λls./\(ls)"(λxs.f"(xs)"(s)) = λx./\(f"(x))"(s) ∈ fset(Point(L)))
9. z : fset(fset(Point(L)))
⊢ \/(λls./\(ls)"(λxs.f"(xs)"(a))) ∧ \/(λls./\(ls)"(λxs.f"(xs)"(b))) ≤ \/(λls./\(ls)"(z)) ∈ Type
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  L  :  BoundedDistributiveLattice
4.  eqL  :  EqDecider(Point(L))
5.  f  :  T  {}\mrightarrow{}  Point(L)
6.  a  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
7.  b  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
8.  \mforall{}[s:fset(fset(T))].  (\mlambda{}ls./\mbackslash{}(ls)"(\mlambda{}xs.f"(xs)"(s))  =  \mlambda{}x./\mbackslash{}(f"(x))"(s))
\mvdash{}  \mbackslash{}/(\mlambda{}ls./\mbackslash{}(ls)"(\mlambda{}xs.f"(xs)"(a)))  \mwedge{}  \mbackslash{}/(\mlambda{}ls./\mbackslash{}(ls)"(\mlambda{}xs.f"(xs)"(b))) 
    \mleq{}  \mbackslash{}/(\mlambda{}ls./\mbackslash{}(ls)"(\mlambda{}xs.f"(xs)"(f-union(deq-fset(eq);deq-fset(eq);a;as.\mlambda{}bs.as  \mcup{}  bs"(b)))))
By
Latex:
Subst'  \mlambda{}xs.f"(xs)"(f-union(deq-fset(eq);deq-fset(eq);a;as.\mlambda{}bs.as  \mcup{}  bs"(b)))
=  f-union(deq-fset(eqL);deq-fset(eqL);\mlambda{}xs.f"(xs)"(a);as.\mlambda{}bs.as  \mcup{}  bs"(\mlambda{}xs.f"(xs)"(b)))  0
Home
Index