Nuprl Lemma : lattice-extend-meet

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
[a,b:Point(free-dist-lattice(T; eq))].
  lattice-extend(L;eq;eqL;f;a) ∧ lattice-extend(L;eq;eqL;f;b) ≤ lattice-extend(L;eq;eqL;f;a ∧ b)


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice lattice-le: a ≤ b lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-extend': lattice-extend'(L;eq;eqL;f;ac) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a lattice-le: a ≤ b bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q fset-ac-glb: fset-ac-glb(eq;ac1;ac2) all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) exists: x:A. B[x] cand: c∧ B lattice-fset-meet: /\(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum compose: g true: True bdd-lattice: BoundedLattice iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  free-dl-meet free-dl-point lattice-le_transitivity bdd-distributive-lattice-subtype-lattice lattice-meet_wf lattice-extend'_wf f-union_wf fset_wf deq-fset_wf fset-image_wf fset-union_wf fset-ac-glb_wf assert_wf fset-antichain_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf fset-minimals-ac-le fset-minimals_wf f-proper-subset-dec_wf decidable-equal-deq fset-ac-le-implies2 fset-ac-le_wf lattice-fset-join-is-lub bdd-distributive-lattice-subtype-bdd-lattice lattice-fset-meet_wf lattice-fset-join_wf member-fset-image-iff fset-member_wf sq_stable_from_decidable lattice-le_wf lattice-fset-meet_functionality_wrt_subset fset-image_functionality_wrt_subset fset-image-compose squash_wf true_wf all_wf decidable_wf bdd-lattice_wf iff_weakening_equal fset-extensionality fset-member_witness exists_wf uiff_wf iff_weakening_uiff member-f-union fset-image-union lattice-le_weakening lattice-meet-join-images-distrib
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache hypothesisEquality applyEquality functionExtensionality setElimination rename cumulativity lambdaEquality dependent_set_memberEquality setEquality independent_isectElimination axiomEquality instantiate productEquality universeEquality functionEquality lambdaFormation dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination imageElimination hyp_replacement applyLambdaEquality imageMemberEquality baseClosed dependent_pairFormation independent_pairFormation natural_numberEquality independent_pairEquality addLevel existsFunctionality andLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[a,b:Point(free-dist-lattice(T;  eq))].
    lattice-extend(L;eq;eqL;f;a)  \mwedge{}  lattice-extend(L;eq;eqL;f;b)  \mleq{}  lattice-extend(L;eq;eqL;f;a  \mwedge{}  b)



Date html generated: 2020_05_20-AM-08_46_09
Last ObjectModification: 2017_07_28-AM-09_14_43

Theory : lattices


Home Index