Nuprl Lemma : lattice-fset-meet_functionality_wrt_subset

[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].  /\(s1) ≤ /\(s2) supposing s2 ⊆ s1


Proof




Definitions occuring in Statement :  lattice-fset-meet: /\(s) bdd-lattice: BoundedLattice lattice-le: a ≤ b lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q implies:  Q all: x:A. B[x] prop: lattice-le: a ≤ b subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} f-subset: xs ⊆ ys
Lemmas referenced :  lattice-fset-meet-is-glb lattice-fset-meet_wf decidable-equal-deq fset-member_wf f-subset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf fset_wf deq_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis independent_functionElimination lambdaFormation because_Cache dependent_functionElimination sqequalRule axiomEquality applyEquality instantiate lambdaEquality cumulativity independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    /\mbackslash{}(s1)  \mleq{}  /\mbackslash{}(s2)  supposing  s2  \msubseteq{}  s1



Date html generated: 2020_05_20-AM-08_44_18
Last ObjectModification: 2015_12_28-PM-02_01_07

Theory : lattices


Home Index