Nuprl Lemma : lattice-fset-meet-is-glb
∀[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))].
  ((∀[s:fset(Point(l))]. ∀[x:Point(l)].  /\(s) ≤ x supposing x ∈ s)
  ∧ (∀[s:fset(Point(l))]. ∀[v:Point(l)].  ((∀x:Point(l). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))))
Proof
Definitions occuring in Statement : 
lattice-fset-meet: /\(s)
, 
bdd-lattice: BoundedLattice
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
lattice-le: a ≤ b
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
bdd-lattice: BoundedLattice
, 
sq_stable: SqStable(P)
, 
top: Top
, 
false: False
, 
guard: {T}
, 
fset-add: fset-add(eq;x;s)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
empty-fset: {}
, 
lattice-fset-meet: /\(s)
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced : 
fset_wf, 
all_wf, 
fset-member_wf, 
lattice-le_wf, 
deq_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bdd-lattice_wf, 
fset-induction, 
uall_wf, 
isect_wf, 
lattice-fset-meet_wf, 
decidable-equal-deq, 
sq_stable__uall, 
squash_wf, 
mem_empty_lemma, 
empty-fset_wf, 
fset-add_wf, 
not_wf, 
sq_stable__equal, 
lattice-meet_wf, 
true_wf, 
lattice-fset-meet-union, 
fset-singleton_wf, 
iff_weakening_equal, 
lattice-fset-meet-singleton, 
member-fset-add, 
lattice-le_transitivity, 
bdd-lattice-subtype-lattice, 
lattice-meet-le, 
lattice-le_weakening, 
sq_stable__all, 
reduce_nil_lemma, 
le-lattice-1, 
lattice-meet-is-glb, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
lambdaEquality, 
functionEquality, 
productElimination, 
independent_pairEquality, 
applyEquality, 
instantiate, 
productEquality, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
voidElimination, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
hyp_replacement, 
applyLambdaEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].
    ((\mforall{}[s:fset(Point(l))].  \mforall{}[x:Point(l)].    /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s)
    \mwedge{}  (\mforall{}[s:fset(Point(l))].  \mforall{}[v:Point(l)].    ((\mforall{}x:Point(l).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))))
Date html generated:
2020_05_20-AM-08_44_11
Last ObjectModification:
2017_07_28-AM-09_14_04
Theory : lattices
Home
Index