Nuprl Lemma : lattice-meet-is-glb
∀l:Lattice. ∀a,b:Point(l).  greatest-lower-bound(Point(l);x,y.x ≤ y;a;b;a ∧ b)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b, 
lattice: Lattice, 
lattice-meet: a ∧ b, 
lattice-point: Point(l), 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c), 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lattice: Lattice, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
cand: A c∧ B, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
lattice-le: a ≤ b, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
lattice-le-iff, 
lattice-meet_wf, 
lattice-join_wf, 
lattice_properties, 
iff_weakening_uiff, 
lattice-le_wf, 
equal_wf, 
lattice-point_wf, 
lattice_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-structure_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
independent_isectElimination, 
equalityIstype, 
independent_functionElimination, 
promote_hyp, 
dependent_functionElimination, 
universeIsType, 
inhabitedIsType, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    greatest-lower-bound(Point(l);x,y.x  \mleq{}  y;a;b;a  \mwedge{}  b)
Date html generated:
2020_05_20-AM-08_25_34
Last ObjectModification:
2020_01_03-AM-00_38_51
Theory : lattices
Home
Index