Nuprl Lemma : lattice-meet-is-glb

l:Lattice. ∀a,b:Point(l).  greatest-lower-bound(Point(l);x,y.x ≤ y;a;b;a ∧ b)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-meet: a ∧ b lattice-point: Point(l) greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T lattice: Lattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a cand: c∧ B implies:  Q rev_implies:  Q prop: iff: ⇐⇒ Q lattice-le: a ≤ b squash: T true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  lattice-le-iff lattice-meet_wf lattice-join_wf lattice_properties iff_weakening_uiff lattice-le_wf equal_wf lattice-point_wf lattice_wf squash_wf true_wf istype-universe lattice-structure_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache hypothesis productElimination independent_isectElimination equalityIstype independent_functionElimination promote_hyp dependent_functionElimination universeIsType inhabitedIsType equalitySymmetry hyp_replacement applyLambdaEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity instantiate universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed

Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    greatest-lower-bound(Point(l);x,y.x  \mleq{}  y;a;b;a  \mwedge{}  b)



Date html generated: 2020_05_20-AM-08_25_34
Last ObjectModification: 2020_01_03-AM-00_38_51

Theory : lattices


Home Index