Nuprl Lemma : lattice-meet-le
∀l:Lattice. ∀a,b:Point(l).  (a ∧ b ≤ a ∧ a ∧ b ≤ b)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
lattice: Lattice
Lemmas referenced : 
lattice-meet-is-glb, 
lattice-point_wf, 
lattice_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
isectElimination, 
setElimination, 
rename
Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    (a  \mwedge{}  b  \mleq{}  a  \mwedge{}  a  \mwedge{}  b  \mleq{}  b)
Date html generated:
2020_05_20-AM-08_25_38
Last ObjectModification:
2018_05_20-PM-10_10_45
Theory : lattices
Home
Index