Nuprl Lemma : lattice-meet-le

l:Lattice. ∀a,b:Point(l).  (a ∧ b ≤ a ∧ a ∧ b ≤ b)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-meet: a ∧ b lattice-point: Point(l) all: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] lattice: Lattice
Lemmas referenced :  lattice-meet-is-glb lattice-point_wf lattice_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_pairFormation isectElimination setElimination rename

Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    (a  \mwedge{}  b  \mleq{}  a  \mwedge{}  a  \mwedge{}  b  \mleq{}  b)



Date html generated: 2020_05_20-AM-08_25_38
Last ObjectModification: 2018_05_20-PM-10_10_45

Theory : lattices


Home Index