Step
*
of Lemma
lattice-meet-fset-join-distrib
No Annotations
∀[l:BoundedDistributiveLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].
(\/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) ∈ Point(l))
BY
{ TACTIC:(Auto THEN QuotientElimForEquality (-2) THEN QuotientElimForEquality (-1)) }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
6. s1 ∈ Point(l) List
7. s3 ∈ Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
12. s2 ∈ Point(l) List
13. s4 ∈ Point(l) List
14. set-equal(Point(l);s2;s4)
⊢ \/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
Latex:
Latex:
No Annotations
\mforall{}[l:BoundedDistributiveLattice]. \mforall{}[eq:EqDecider(Point(l))]. \mforall{}[s1,s2:fset(Point(l))].
(\mbackslash{}/(s1) \mwedge{} \mbackslash{}/(s2) = \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a \mwedge{} b"(s2))))
By
Latex:
TACTIC:(Auto THEN QuotientElimForEquality (-2) THEN QuotientElimForEquality (-1))
Home
Index