Nuprl Lemma : lattice-meet-fset-join-distrib
∀[l:BoundedDistributiveLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].
  (\/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) ∈ Point(l))
Proof
Definitions occuring in Statement : 
lattice-fset-join: \/(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
fset: fset(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
bdd-lattice: BoundedLattice
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
lattice-0: 0
, 
record-select: r.x
, 
top: Top
, 
listp: A List+
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
eqof: eqof(d)
, 
fset-member: a ∈ s
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
lattice-meet: a ∧ b
, 
fset-image: f"(s)
Lemmas referenced : 
bdd-distributive-lattice_wf, 
deq_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
fset_wf, 
set-equal_wf, 
equal-wf-base, 
fset-image_wf, 
f-union_wf, 
set-equal-equiv, 
list_wf, 
quotient-member-eq, 
decidable-equal-deq, 
bdd-distributive-lattice-subtype-bdd-lattice, 
bdd-lattice_wf, 
decidable_wf, 
all_wf, 
squash_wf, 
lattice-fset-join_wf, 
iff_weakening_equal, 
true_wf, 
list_subtype_fset, 
list_induction, 
lattice-meet-0, 
reduce_cons_lemma, 
length_wf, 
less_than_wf, 
cons_wf_listp, 
bdd-distributive-lattice-subtype-distributive-lattice, 
distributive-lattice-distrib, 
uiff_wf, 
member-fset-union, 
or_wf, 
fset-member_wf, 
fset-member_witness, 
fset-union_wf, 
fset-extensionality, 
member-fset-image-iff, 
decidable__fset-member, 
decidable__or, 
sq_stable_from_decidable, 
member-f-union, 
safe-assert-deq, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
assert-deq-member, 
l_member_wf, 
deq-member_wf, 
eqof_wf, 
bor_wf, 
assert_wf, 
deq_member_cons_lemma, 
and_wf, 
sq_stable__fset-member, 
member_wf, 
cons_member, 
cons_wf, 
lattice-fset-join-union, 
lattice_properties, 
bdd-distributive-lattice-subtype-lattice, 
lattice-0_wf, 
lattice-fset-join-singleton, 
fset-singleton_wf, 
member-fset-singleton
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
independent_isectElimination, 
universeEquality, 
cumulativity, 
lambdaEquality, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
productEquality, 
hypothesis, 
thin, 
productElimination, 
pertypeElimination, 
sqequalRule, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
natural_numberEquality, 
baseClosed, 
imageMemberEquality, 
dependent_functionElimination, 
lambdaFormation, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
imageElimination, 
promote_hyp, 
rename, 
setElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
universeIsType, 
lambdaEquality_alt, 
isectEquality, 
voidEquality, 
voidElimination, 
applyLambdaEquality, 
hyp_replacement, 
independent_pairEquality, 
addLevel, 
independent_pairFormation, 
orFunctionality, 
inrFormation, 
inlFormation, 
unionElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
equalityElimination, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[l:BoundedDistributiveLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    (\mbackslash{}/(s1)  \mwedge{}  \mbackslash{}/(s2)  =  \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a  \mwedge{}  b"(s2))))
Date html generated:
2020_05_20-AM-08_44_30
Last ObjectModification:
2020_02_03-PM-03_10_53
Theory : lattices
Home
Index