Nuprl Lemma : lattice-meet-fset-join-distrib

[l:BoundedDistributiveLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s1,s2:fset(Point(l))].
  (\/(s1) ∧ \/(s2) \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-distributive-lattice: BoundedDistributiveLattice lattice-meet: a ∧ b lattice-point: Point(l) fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice subtype_rel: A ⊆B prop: and: P ∧ Q quotient: x,y:A//B[x; y] fset: fset(T) member: t ∈ T uall: [x:A]. B[x] true: True so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] all: x:A. B[x] bdd-lattice: BoundedLattice implies:  Q squash: T rev_implies:  Q iff: ⇐⇒ Q guard: {T} f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum nil: [] it: lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind lattice-0: 0 record-select: r.x top: Top listp: List+ or: P ∨ Q uiff: uiff(P;Q) sq_stable: SqStable(P) exists: x:A. B[x] eqof: eqof(d) fset-member: a ∈ s cand: c∧ B rev_uimplies: rev_uimplies(P;Q) lattice-meet: a ∧ b fset-image: f"(s)
Lemmas referenced :  bdd-distributive-lattice_wf deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set lattice-point_wf fset_wf set-equal_wf equal-wf-base fset-image_wf f-union_wf set-equal-equiv list_wf quotient-member-eq decidable-equal-deq bdd-distributive-lattice-subtype-bdd-lattice bdd-lattice_wf decidable_wf all_wf squash_wf lattice-fset-join_wf iff_weakening_equal true_wf list_subtype_fset list_induction lattice-meet-0 reduce_cons_lemma length_wf less_than_wf cons_wf_listp bdd-distributive-lattice-subtype-distributive-lattice distributive-lattice-distrib uiff_wf member-fset-union or_wf fset-member_wf fset-member_witness fset-union_wf fset-extensionality member-fset-image-iff decidable__fset-member decidable__or sq_stable_from_decidable member-f-union safe-assert-deq assert_of_bor iff_weakening_uiff iff_transitivity assert-deq-member l_member_wf deq-member_wf eqof_wf bor_wf assert_wf deq_member_cons_lemma and_wf sq_stable__fset-member member_wf cons_member cons_wf lattice-fset-join-union lattice_properties bdd-distributive-lattice-subtype-lattice lattice-0_wf lattice-fset-join-singleton fset-singleton_wf member-fset-singleton
Rules used in proof :  axiomEquality isect_memberEquality independent_isectElimination universeEquality cumulativity lambdaEquality instantiate applyEquality hypothesisEquality isectElimination extract_by_obid productEquality hypothesis thin productElimination pertypeElimination sqequalRule because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality baseClosed imageMemberEquality dependent_functionElimination lambdaFormation equalitySymmetry equalityTransitivity independent_functionElimination imageElimination promote_hyp rename setElimination lambdaFormation_alt inhabitedIsType universeIsType lambdaEquality_alt isectEquality voidEquality voidElimination applyLambdaEquality hyp_replacement independent_pairEquality addLevel independent_pairFormation orFunctionality inrFormation inlFormation unionElimination dependent_set_memberEquality dependent_pairFormation equalityElimination levelHypothesis equalityUniverse

Latex:
\mforall{}[l:BoundedDistributiveLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s1,s2:fset(Point(l))].
    (\mbackslash{}/(s1)  \mwedge{}  \mbackslash{}/(s2)  =  \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a  \mwedge{}  b"(s2))))



Date html generated: 2020_05_20-AM-08_44_30
Last ObjectModification: 2020_02_03-PM-03_10_53

Theory : lattices


Home Index