Step
*
1
of Lemma
lattice-meet-fset-join-distrib
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
6. s1 ∈ Point(l) List
7. s3 ∈ Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
12. s2 ∈ Point(l) List
13. s4 ∈ Point(l) List
14. set-equal(Point(l);s2;s4)
⊢ \/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
BY
{ (Assert \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l) BY
RepeatFor 3 ((EqCD THEN Auto))) }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
6. s1 ∈ Point(l) List
7. s3 ∈ Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
12. s2 ∈ Point(l) List
13. s4 ∈ Point(l) List
14. set-equal(Point(l);s2;s4)
15. \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
⊢ \/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
Latex:
Latex:
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3
6. s1 \mmember{} Point(l) List
7. s3 \mmember{} Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4
12. s2 \mmember{} Point(l) List
13. s4 \mmember{} Point(l) List
14. set-equal(Point(l);s2;s4)
\mvdash{} \mbackslash{}/(s1) \mwedge{} \mbackslash{}/(s2) = \mbackslash{}/(f-union(eq;eq;s3;a.\mlambda{}b.a \mwedge{} b"(s4)))
By
Latex:
(Assert \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a \mwedge{} b"(s2))) = \mbackslash{}/(f-union(eq;eq;s3;a.\mlambda{}b.a \mwedge{} b"(s4))) BY
RepeatFor 3 ((EqCD THEN Auto)))
Home
Index