Step
*
1
1
of Lemma
lattice-meet-fset-join-distrib
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
6. s1 ∈ Point(l) List
7. s3 ∈ Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4 ∈ pertype(λx,y. ((x ∈ Point(l) List) ∧ (y ∈ Point(l) List) ∧ set-equal(Point(l);x;y)))
12. s2 ∈ Point(l) List
13. s4 ∈ Point(l) List
14. set-equal(Point(l);s2;s4)
15. \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
⊢ \/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s3;a.λb.a ∧ b"(s4))) ∈ Point(l)
BY
{ ((Assert ⌜\/(s1) ∧ \/(s2) = \/(f-union(eq;eq;s1;a.λb.a ∧ b"(s2))) ∈ Point(l)⌝⋅ THENM Eq)
THEN ThinVar `s3'
THEN ThinVar `s4'
THEN ((GenConcl ⌜s1 = as ∈ (Point(l) List)⌝⋅ THENA Auto) THEN ThinVar `s1')
THEN (GenConcl ⌜s2 = bs ∈ (Point(l) List)⌝⋅ THENA Auto)
THEN ThinVar `s2') }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. as : Point(l) List@i
4. bs : Point(l) List@i
⊢ \/(as) ∧ \/(bs) = \/(f-union(eq;eq;as;a.λb.a ∧ b"(bs))) ∈ Point(l)
Latex:
Latex:
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. s1 : Base
4. s3 : Base
5. s1 = s3
6. s1 \mmember{} Point(l) List
7. s3 \mmember{} Point(l) List
8. set-equal(Point(l);s1;s3)
9. s2 : Base
10. s4 : Base
11. s2 = s4
12. s2 \mmember{} Point(l) List
13. s4 \mmember{} Point(l) List
14. set-equal(Point(l);s2;s4)
15. \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a \mwedge{} b"(s2))) = \mbackslash{}/(f-union(eq;eq;s3;a.\mlambda{}b.a \mwedge{} b"(s4)))
\mvdash{} \mbackslash{}/(s1) \mwedge{} \mbackslash{}/(s2) = \mbackslash{}/(f-union(eq;eq;s3;a.\mlambda{}b.a \mwedge{} b"(s4)))
By
Latex:
((Assert \mkleeneopen{}\mbackslash{}/(s1) \mwedge{} \mbackslash{}/(s2) = \mbackslash{}/(f-union(eq;eq;s1;a.\mlambda{}b.a \mwedge{} b"(s2)))\mkleeneclose{}\mcdot{} THENM Eq)
THEN ThinVar `s3'
THEN ThinVar `s4'
THEN ((GenConcl \mkleeneopen{}s1 = as\mkleeneclose{}\mcdot{} THENA Auto) THEN ThinVar `s1')
THEN (GenConcl \mkleeneopen{}s2 = bs\mkleeneclose{}\mcdot{} THENA Auto)
THEN ThinVar `s2')
Home
Index