Step
*
1
1
1
of Lemma
lattice-meet-fset-join-distrib
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. as : Point(l) List@i
4. bs : Point(l) List@i
⊢ \/(as) ∧ \/(bs) = \/(f-union(eq;eq;as;a.λb.a ∧ b"(bs))) ∈ Point(l)
BY
{ ((Assert ∀[a,b,c:Point(l)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l)) BY (D 1 THEN Auto)) THEN PromoteHyp (-1) 3) }
1
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. ∀[a,b,c:Point(l)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(l))
4. as : Point(l) List@i
5. bs : Point(l) List@i
⊢ \/(as) ∧ \/(bs) = \/(f-union(eq;eq;as;a.λb.a ∧ b"(bs))) ∈ Point(l)
Latex:
Latex:
1. l : BoundedDistributiveLattice
2. eq : EqDecider(Point(l))
3. as : Point(l) List@i
4. bs : Point(l) List@i
\mvdash{} \mbackslash{}/(as) \mwedge{} \mbackslash{}/(bs) = \mbackslash{}/(f-union(eq;eq;as;a.\mlambda{}b.a \mwedge{} b"(bs)))
By
Latex:
((Assert \mforall{}[a,b,c:Point(l)]. (a \mwedge{} b \mvee{} c = a \mwedge{} b \mvee{} a \mwedge{} c) BY (D 1 THEN Auto)) THEN PromoteHyp (-1) 3)
Home
Index