Step
*
2
1
1
of Lemma
agree_on_equiv
1. T : Type
2. P : T ⟶ ℙ
3. ∀a,b:T List.
(((||a|| = ||b|| ∈ ℤ) c∧ (∀i:ℕ||a||. ((P[a[i]] ∨ P[b[i]])
⇒ (a[i] = b[i] ∈ T))))
⇒ ((||b|| = ||a|| ∈ ℤ) c∧ (∀i:ℕ||b||. ((P[b[i]] ∨ P[a[i]])
⇒ (b[i] = a[i] ∈ T)))))
4. a : T List
5. b : T List
6. c : T List
7. ||a|| = ||b|| ∈ ℤ
8. ∀i:ℕ||a||. ((P[a[i]] ∨ P[b[i]])
⇒ (a[i] = b[i] ∈ T))
9. ||b|| = ||c|| ∈ ℤ
10. ∀i:ℕ||b||. ((P[b[i]] ∨ P[c[i]])
⇒ (b[i] = c[i] ∈ T))
11. ||a|| = ||c|| ∈ ℤ
12. i : ℕ||a||
13. P[a[i]]
⊢ a[i] = c[i] ∈ T
BY
{ ((Assert a[i] = b[i] ∈ T BY Auto) THEN HypSubst (-1) 0 THEN Auto) }
Latex:
Latex:
1. T : Type
2. P : T {}\mrightarrow{} \mBbbP{}
3. \mforall{}a,b:T List.
(((||a|| = ||b||) c\mwedge{} (\mforall{}i:\mBbbN{}||a||. ((P[a[i]] \mvee{} P[b[i]]) {}\mRightarrow{} (a[i] = b[i]))))
{}\mRightarrow{} ((||b|| = ||a||) c\mwedge{} (\mforall{}i:\mBbbN{}||b||. ((P[b[i]] \mvee{} P[a[i]]) {}\mRightarrow{} (b[i] = a[i])))))
4. a : T List
5. b : T List
6. c : T List
7. ||a|| = ||b||
8. \mforall{}i:\mBbbN{}||a||. ((P[a[i]] \mvee{} P[b[i]]) {}\mRightarrow{} (a[i] = b[i]))
9. ||b|| = ||c||
10. \mforall{}i:\mBbbN{}||b||. ((P[b[i]] \mvee{} P[c[i]]) {}\mRightarrow{} (b[i] = c[i]))
11. ||a|| = ||c||
12. i : \mBbbN{}||a||
13. P[a[i]]
\mvdash{} a[i] = c[i]
By
Latex:
((Assert a[i] = b[i] BY Auto) THEN HypSubst (-1) 0 THEN Auto)
Home
Index