Nuprl Lemma : comb_for_nth_tl_wf

λA,as,i,z. nth_tl(i;as) ∈ A:Type ⟶ as:(A List) ⟶ i:ℤ ⟶ (↓True) ⟶ (A List)


Proof




Definitions occuring in Statement :  nth_tl: nth_tl(n;as) list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  nth_tl_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality universeEquality

Latex:
\mlambda{}A,as,i,z.  nth\_tl(i;as)  \mmember{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  i:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (A  List)



Date html generated: 2018_05_21-PM-06_20_12
Last ObjectModification: 2018_05_19-PM-05_32_17

Theory : list!


Home Index