Nuprl Lemma : comb_for_nth_tl_wf
λA,as,i,z. nth_tl(i;as) ∈ A:Type ⟶ as:(A List) ⟶ i:ℤ ⟶ (↓True) ⟶ (A List)
Proof
Definitions occuring in Statement : 
nth_tl: nth_tl(n;as)
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
nth_tl_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
intEquality, 
universeEquality
Latex:
\mlambda{}A,as,i,z.  nth\_tl(i;as)  \mmember{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  i:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (A  List)
Date html generated:
2018_05_21-PM-06_20_12
Last ObjectModification:
2018_05_19-PM-05_32_17
Theory : list!
Home
Index