Step
*
of Lemma
count_index_pairs_wf
∀[T:Type]. ∀[P:L:(T List) ⟶ ℕ||L|| - 1 ⟶ ℕ||L|| ⟶ 𝔹]. ∀[L:T List]. (count(i<j<||L|| : P L i j) ∈ ℕ)
BY
{ ((UnivCD THENA Auto) THEN Assert count(i<j<||L|| : P L i j) ∈ ℤ) }
1
.....assertion.....
1. T : Type
2. P : L:(T List) ⟶ ℕ||L|| - 1 ⟶ ℕ||L|| ⟶ 𝔹
3. L : T List
⊢ count(i<j<||L|| : P L i j) ∈ ℤ
2
1. T : Type
2. P : L:(T List) ⟶ ℕ||L|| - 1 ⟶ ℕ||L|| ⟶ 𝔹
3. L : T List
4. count(i<j<||L|| : P L i j) ∈ ℤ
⊢ count(i<j<||L|| : P L i j) ∈ ℕ
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[P:L:(T List) {}\mrightarrow{} \mBbbN{}||L|| - 1 {}\mrightarrow{} \mBbbN{}||L|| {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List].
(count(i<j<||L|| : P L i j) \mmember{} \mBbbN{})
By
Latex:
((UnivCD THENA Auto) THEN Assert count(i<j<||L|| : P L i j) \mmember{} \mBbbZ{})
Home
Index