Nuprl Lemma : count_index_pairs_wf

[T:Type]. ∀[P:L:(T List) ⟶ ℕ||L|| 1 ⟶ ℕ||L|| ⟶ 𝔹]. ∀[L:T List].  (count(i<j<||L|| j) ∈ ℕ)


Proof




Definitions occuring in Statement :  count_index_pairs: count(i<j<||L|| j) length: ||as|| list: List int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) int_seg: {i..j-} count_index_pairs: count(i<j<||L|| j) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff sq_type: SQType(T) assert: b bnot: ¬bb iff: ⇐⇒ Q rev_implies:  Q nat: double_sum: sum(f[x; y] x < n; y < m) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  list_wf int_seg_wf subtract_wf length_wf bool_wf assert_of_lt_int length_wf_nat double_sum_wf lt_int_wf eqtt_to_assert int_seg_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot not_functionality_wrt_iff assert_wf less_than_wf iff_transitivity iff_weakening_uiff assert_of_band le_wf non_neg_sum sum_wf istype-int istype-void int_subtype_base istype-false set_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality_alt because_Cache functionIsType natural_numberEquality universeEquality independent_isectElimination productElimination rename setElimination lambdaEquality lambdaFormation unionElimination equalityElimination applyEquality functionExtensionality cumulativity dependent_set_memberEquality independent_pairFormation dependent_functionElimination imageElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality promote_hyp instantiate productEquality dependent_set_memberEquality_alt lambdaEquality_alt inhabitedIsType lambdaFormation_alt dependent_pairFormation_alt productIsType equalityIsType1 equalityIsType2 baseApply closedConclusion baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[P:L:(T  List)  {}\mrightarrow{}  \mBbbN{}||L||  -  1  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    (count(i<j<||L||  :  P  L  i  j)  \mmember{}  \mBbbN{})



Date html generated: 2019_10_15-AM-10_58_12
Last ObjectModification: 2018_10_11-PM-05_31_17

Theory : list!


Home Index