Nuprl Lemma : count_index_pairs_wf
∀[T:Type]. ∀[P:L:(T List) ⟶ ℕ||L|| - 1 ⟶ ℕ||L|| ⟶ 𝔹]. ∀[L:T List].  (count(i<j<||L|| : P L i j) ∈ ℕ)
Proof
Definitions occuring in Statement : 
count_index_pairs: count(i<j<||L|| : P L i j), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
int_seg: {i..j-}, 
count_index_pairs: count(i<j<||L|| : P L i j), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
lelt: i ≤ j < k, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
bfalse: ff, 
sq_type: SQType(T), 
assert: ↑b, 
bnot: ¬bb, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
double_sum: sum(f[x; y] | x < n; y < m), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
list_wf, 
int_seg_wf, 
subtract_wf, 
length_wf, 
bool_wf, 
assert_of_lt_int, 
length_wf_nat, 
double_sum_wf, 
lt_int_wf, 
eqtt_to_assert, 
int_seg_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
eqff_to_assert, 
assert-bnot, 
not_functionality_wrt_iff, 
assert_wf, 
less_than_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
le_wf, 
non_neg_sum, 
sum_wf, 
istype-int, 
istype-void, 
int_subtype_base, 
istype-false, 
set_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality_alt, 
because_Cache, 
functionIsType, 
natural_numberEquality, 
universeEquality, 
independent_isectElimination, 
productElimination, 
rename, 
setElimination, 
lambdaEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
imageElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
promote_hyp, 
instantiate, 
productEquality, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
productIsType, 
equalityIsType1, 
equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[P:L:(T  List)  {}\mrightarrow{}  \mBbbN{}||L||  -  1  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    (count(i<j<||L||  :  P  L  i  j)  \mmember{}  \mBbbN{})
Date html generated:
2019_10_15-AM-10_58_12
Last ObjectModification:
2018_10_11-PM-05_31_17
Theory : list!
Home
Index