Nuprl Lemma : double_sum_wf

[n,m:ℕ]. ∀[f:ℕn ⟶ ℕm ⟶ ℤ].  (sum(f[x;y] x < n; y < m) ∈ ℤ)


Proof




Definitions occuring in Statement :  double_sum: sum(f[x; y] x < n; y < m) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T double_sum: sum(f[x; y] x < n; y < m) so_lambda: λ2x.t[x] so_apply: x[s1;s2] nat: so_apply: x[s]
Lemmas referenced :  sum_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  intEquality isect_memberEquality functionEquality Error :inhabitedIsType

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].    (sum(f[x;y]  |  x  <  n;  y  <  m)  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-PM-02_29_32
Last ObjectModification: 2018_09_26-PM-05_50_57

Theory : num_thy_1


Home Index