Step
*
of Lemma
adjugate-property
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ((M*adj(M)) = |M|*I ∈ Matrix(n;n;r))
BY
{ (Auto
THEN (CaseNat 0 `n'
THENL [(Unfold `matrix` 0 THEN FunExt THEN Auto)
; (Unfolds ``matrix-times matrix-scalar-mul`` 0
THEN EqCDA
THEN RepUR ``identity-matrix adjugate`` 0
THEN Assert ⌜|matrix(if a=y then M[x,b] else M[a,b])| = (|M| * if x=y then 1 else 0) ∈ |r|⌝⋅)]
)
) }
1
.....assertion.....
1. r : CRng
2. n : ℕ
3. M : Matrix(n;n;r)
4. ¬(n = 0 ∈ ℤ)
5. x : ℕn@i
6. y : ℕn@i
⊢ |matrix(if a=y then M[x,b] else M[a,b])| = (|M| * if x=y then 1 else 0) ∈ |r|
2
1. r : CRng
2. n : ℕ
3. M : Matrix(n;n;r)
4. ¬(n = 0 ∈ ℤ)
5. x : ℕn@i
6. y : ℕn@i
7. |matrix(if a=y then M[x,b] else M[a,b])| = (|M| * if x=y then 1 else 0) ∈ |r|
⊢ (Σ(r) 0
≤ i
< n
M[x,i] * if isEven(i + y) then |matrix-minor(y;i;M)| else -r |matrix-minor(y;i;M)| fi )
= (|M| * if x=y then 1 else 0)
∈ |r|
Latex:
Latex:
\mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}]. \mforall{}[M:Matrix(n;n;r)]. ((M*adj(M)) = |M|*I)
By
Latex:
(Auto
THEN (CaseNat 0 `n'
THENL [(Unfold `matrix` 0 THEN FunExt THEN Auto)
; (Unfolds ``matrix-times matrix-scalar-mul`` 0
THEN EqCDA
THEN RepUR ``identity-matrix adjugate`` 0
THEN Assert
\mkleeneopen{}|matrix(if a=y then M[x,b] else M[a,b])| = (|M| * if x=y then 1 else 0)\mkleeneclose{}\mcdot{})]
)
)
Home
Index