Nuprl Lemma : adjugate-property
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  ((M*adj(M)) = |M|*I ∈ Matrix(n;n;r))
Proof
Definitions occuring in Statement : 
adjugate: adj(M)
, 
matrix-scalar-mul: k*M
, 
matrix-det: |M|
, 
identity-matrix: I
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
matrix-scalar-mul: k*M
, 
matrix-times: (M*N)
, 
squash: ↓T
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x y.t[x; y]
, 
identity-matrix: I
, 
adjugate: adj(M)
, 
so_apply: x[s1;s2]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
matrix-ap: M[i,j]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
determinant: determinant(n;r)
, 
infix_ap: x f y
, 
isOdd: isOdd(n)
, 
eq_int: (i =z j)
, 
modulus: a mod n
, 
matrix-minor: matrix-minor(i;j;m)
, 
mx: matrix(M[x; y])
, 
less_than: a < b
, 
subtract: n - m
, 
same-parity: same-parity(n;m)
, 
ringeq_int_terms: t1 ≡ t2
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
mx_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_sig_wf, 
matrix_ap_mx_lemma, 
matrix_wf, 
nat_wf, 
crng_wf, 
equal_wf, 
matrix-det_wf, 
matrix-ap_wf, 
rng_times_one, 
subtype_rel_self, 
iff_weakening_equal, 
rng_times_zero, 
rng_wf, 
upper_subtype_nat, 
false_wf, 
nequal-le-implies, 
zero-add, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_upper_properties, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
lelt_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal-rows-det, 
not_wf, 
matrix-swap-rows_wf, 
exists_wf, 
rng_times_wf, 
isEven_wf, 
rng_minus_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
matrix-minor_wf, 
primrec-unroll, 
lt_int_wf, 
assert_of_lt_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
less_than_wf, 
matrix-det-is-determinant, 
rng_sum_wf, 
subtract-add-cancel, 
add-zero, 
determinant_wf, 
infix_ap_wf, 
det-swap-rows, 
equal-wf-base-T, 
rng_minus_minus, 
rng_minus_sum, 
ge_wf, 
int_seg_subtype_nat, 
itermAdd_wf, 
int_term_value_add_lemma, 
iff_imp_equal_bool, 
isOdd_wf, 
btrue_wf, 
assert_wf, 
set_subtype_base, 
top_wf, 
add-member-int_seg2, 
less_than_anti-reflexive, 
equal-wf-base, 
odd-implies, 
even-implies, 
bfalse_wf, 
even-iff-not-odd, 
isEven-add, 
same-parity_wf, 
odd-or-even, 
assert_of_bor, 
rng_times_over_minus, 
itermMinus_wf, 
itermMultiply_wf, 
ringeq-iff-rsub-is-0, 
ring_polynomial_null, 
int-to-ring_wf, 
ring_term_value_add_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_mul_lemma, 
ring_term_value_var_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
productElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
imageElimination, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
int_eqReduceTrueSq, 
universeEquality, 
int_eqReduceFalseSq, 
hypothesis_subsumption, 
lambdaFormation, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
productEquality, 
addEquality, 
applyLambdaEquality, 
hyp_replacement, 
intWeakElimination, 
lessCases, 
axiomSqEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    ((M*adj(M))  =  |M|*I)
Date html generated:
2019_10_16-AM-11_28_16
Last ObjectModification:
2018_08_20-PM-09_47_22
Theory : matrices
Home
Index