Nuprl Lemma : adjugate-property

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  ((M*adj(M)) |M|*I ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  adjugate: adj(M) matrix-scalar-mul: k*M matrix-det: |M| identity-matrix: I matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} matrix: Matrix(n;m;r) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: matrix-scalar-mul: k*M matrix-times: (M*N) squash: T crng: CRng rng: Rng so_lambda: λ2y.t[x; y] identity-matrix: I adjugate: adj(M) so_apply: x[s1;s2] true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q matrix-ap: M[i,j] le: A ≤ B less_than': less_than'(a;b) nequal: a ≠ b ∈  int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] matrix-swap-rows: matrix-swap-rows(M;i;j) determinant: determinant(n;r) infix_ap: y isOdd: isOdd(n) eq_int: (i =z j) modulus: mod n matrix-minor: matrix-minor(i;j;m) mx: matrix(M[x; y]) less_than: a < b subtract: m same-parity: same-parity(n;m) ringeq_int_terms: t1 ≡ t2
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf mx_wf squash_wf true_wf rng_car_wf rng_sig_wf matrix_ap_mx_lemma matrix_wf nat_wf crng_wf equal_wf matrix-det_wf matrix-ap_wf rng_times_one subtype_rel_self iff_weakening_equal rng_times_zero rng_wf upper_subtype_nat false_wf nequal-le-implies zero-add le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_upper_properties decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt lelt_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int equal-rows-det not_wf matrix-swap-rows_wf exists_wf rng_times_wf isEven_wf rng_minus_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma matrix-minor_wf primrec-unroll lt_int_wf assert_of_lt_int intformeq_wf int_formula_prop_eq_lemma less_than_wf matrix-det-is-determinant rng_sum_wf subtract-add-cancel add-zero determinant_wf infix_ap_wf det-swap-rows equal-wf-base-T rng_minus_minus rng_minus_sum ge_wf int_seg_subtype_nat itermAdd_wf int_term_value_add_lemma iff_imp_equal_bool isOdd_wf btrue_wf assert_wf set_subtype_base top_wf add-member-int_seg2 less_than_anti-reflexive equal-wf-base odd-implies even-implies bfalse_wf even-iff-not-odd isEven-add same-parity_wf odd-or-even assert_of_bor rng_times_over_minus itermMinus_wf itermMultiply_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_minus_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_const_lemma int-to-ring-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination functionExtensionality equalityTransitivity equalitySymmetry hypothesisEquality productElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality imageElimination functionEquality imageMemberEquality baseClosed axiomEquality int_eqReduceTrueSq universeEquality int_eqReduceFalseSq hypothesis_subsumption lambdaFormation dependent_set_memberEquality equalityElimination promote_hyp productEquality addEquality applyLambdaEquality hyp_replacement intWeakElimination lessCases axiomSqEquality baseApply closedConclusion

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    ((M*adj(M))  =  |M|*I)



Date html generated: 2019_10_16-AM-11_28_16
Last ObjectModification: 2018_08_20-PM-09_47_22

Theory : matrices


Home Index