Nuprl Lemma : det-swap-rows

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i,j:ℕn].  |matrix-swap-rows(M;i;j)| (-r |M|) ∈ |r| supposing ¬(i j ∈ ℤ)


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-swap-rows: matrix-swap-rows(M;i;j) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a natural_number: $n int: equal: t ∈ T crng: CRng rng_minus: -r rng_car: |r|
Definitions unfolded in proof :  true: True rng: Rng crng: CRng nat: int_seg: {i..j-} prop: top: Top uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  matrix-det_wf rng_minus_wf matrix-transpose_wf matrix-swap-cols_wf rng_car_wf crng_wf nat_wf matrix_wf int_seg_wf equal_wf not_wf swap-rows-is-transpose-swap-cols squash_wf true_wf det-transpose det-swap-cols iff_weakening_equal
Rules used in proof :  applyEquality natural_numberEquality equalitySymmetry equalityTransitivity because_Cache axiomEquality hypothesisEquality rename setElimination intEquality hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality imageElimination universeEquality independent_isectElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i,j:\mBbbN{}n].
    |matrix-swap-rows(M;i;j)|  =  (-r  |M|)  supposing  \mneg{}(i  =  j)



Date html generated: 2018_05_21-PM-09_36_35
Last ObjectModification: 2017_12_11-PM-04_13_25

Theory : matrices


Home Index