Nuprl Lemma : matrix-transpose_wf

[n,m:ℤ]. ∀[r:RngSig]. ∀[M:Matrix(n;m;r)].  (M' ∈ Matrix(m;n;r))


Proof




Definitions occuring in Statement :  matrix-transpose: M' matrix: Matrix(n;m;r) uall: [x:A]. B[x] member: t ∈ T int: rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] matrix-transpose: M' member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf matrix_wf int_seg_wf matrix-ap_wf mx_wf
Rules used in proof :  intEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality hypothesis lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:RngSig].  \mforall{}[M:Matrix(n;m;r)].    (M'  \mmember{}  Matrix(m;n;r))



Date html generated: 2018_05_21-PM-09_34_13
Last ObjectModification: 2017_12_11-PM-00_29_22

Theory : matrices


Home Index