Nuprl Lemma : rng_minus_sum

[r:Rng]. ∀[a,b:ℤ].
  ∀[F:{a..b-} ⟶ |r|]. ((-r (r) a ≤ i < b. F[i])) (r) a ≤ i < b. -r F[i]) ∈ |r|) supposing a ≤ b


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_minus: -r rng_car: |r| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  true: True squash: T prop: rng: Rng uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_wf le_wf int_seg_wf rng_car_wf equal_wf rng_one_wf rng_minus_wf rng_times_sum_l rng_sum_wf squash_wf true_wf rng_times_over_minus rng_times_one iff_weakening_equal
Rules used in proof :  intEquality equalityTransitivity axiomEquality isect_memberEquality functionEquality baseClosed imageMemberEquality natural_numberEquality imageElimination lambdaEquality sqequalRule equalitySymmetry hyp_replacement because_Cache rename setElimination applyEquality hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].  ((-r  (\mSigma{}(r)  a  \mleq{}  i  <  b.  F[i]))  =  (\mSigma{}(r)  a  \mleq{}  i  <  b.  -r  F[i]))  supposing  a  \mleq{}  b



Date html generated: 2018_05_21-PM-03_15_12
Last ObjectModification: 2017_12_14-AM-10_03_39

Theory : rings_1


Home Index