Nuprl Lemma : rng_minus_sum
∀[r:Rng]. ∀[a,b:ℤ].
  ∀[F:{a..b-} ⟶ |r|]. ((-r (Σ(r) a ≤ i < b. F[i])) = (Σ(r) a ≤ i < b. -r F[i]) ∈ |r|) supposing a ≤ b
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_minus: -r
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
rng: Rng
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_wf, 
le_wf, 
int_seg_wf, 
rng_car_wf, 
equal_wf, 
rng_one_wf, 
rng_minus_wf, 
rng_times_sum_l, 
rng_sum_wf, 
squash_wf, 
true_wf, 
rng_times_over_minus, 
rng_times_one, 
iff_weakening_equal
Rules used in proof : 
intEquality, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaEquality, 
sqequalRule, 
equalitySymmetry, 
hyp_replacement, 
because_Cache, 
rename, 
setElimination, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[F:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].  ((-r  (\mSigma{}(r)  a  \mleq{}  i  <  b.  F[i]))  =  (\mSigma{}(r)  a  \mleq{}  i  <  b.  -r  F[i]))  supposing  a  \mleq{}  b
Date html generated:
2018_05_21-PM-03_15_12
Last ObjectModification:
2017_12_14-AM-10_03_39
Theory : rings_1
Home
Index