Nuprl Lemma : equal-rows-det

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].
  |M| 0 ∈ |r| supposing ∃i,j:ℕn. ((¬(i j ∈ ℤ)) ∧ (matrix-swap-rows(M;i;j) M ∈ Matrix(n;n;r)))


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-swap-rows: matrix-swap-rows(M;i;j) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q natural_number: $n int: equal: t ∈ T crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] rng: Rng crng: CRng int_seg: {i..j-} so_lambda: λ2x.t[x] nat: prop: and: P ∧ Q exists: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] cand: c∧ B
Lemmas referenced :  crng_wf nat_wf matrix-swap-rows_wf matrix_wf equal_wf not_wf int_seg_wf exists_wf det-equal-rows
Rules used in proof :  intEquality productEquality lambdaEquality sqequalRule because_Cache rename setElimination natural_numberEquality productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut independent_pairFormation independent_isectElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].
    |M|  =  0  supposing  \mexists{}i,j:\mBbbN{}n.  ((\mneg{}(i  =  j))  \mwedge{}  (matrix-swap-rows(M;i;j)  =  M))



Date html generated: 2018_05_21-PM-09_36_16
Last ObjectModification: 2017_12_13-PM-11_45_13

Theory : matrices


Home Index