Nuprl Lemma : equal-rows-det
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].
  |M| = 0 ∈ |r| supposing ∃i,j:ℕn. ((¬(i = j ∈ ℤ)) ∧ (matrix-swap-rows(M;i;j) = M ∈ Matrix(n;n;r)))
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s]
, 
rng: Rng
, 
crng: CRng
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix-swap-rows_wf, 
matrix_wf, 
equal_wf, 
not_wf, 
int_seg_wf, 
exists_wf, 
det-equal-rows
Rules used in proof : 
intEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
independent_isectElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].
    |M|  =  0  supposing  \mexists{}i,j:\mBbbN{}n.  ((\mneg{}(i  =  j))  \mwedge{}  (matrix-swap-rows(M;i;j)  =  M))
Date html generated:
2018_05_21-PM-09_36_16
Last ObjectModification:
2017_12_13-PM-11_45_13
Theory : matrices
Home
Index