Nuprl Lemma : det-equal-rows

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i,j:ℕn].
  |M| 0 ∈ |r| supposing (i j ∈ ℤ)) ∧ (matrix-swap-rows(M;i;j) M ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-swap-rows: matrix-swap-rows(M;i;j) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q natural_number: $n int: equal: t ∈ T crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q matrix-det: |M| nat: subtype_rel: A ⊆B prop: crng: CRng so_lambda: λ2x.t[x] rng: Rng false: False implies:  Q not: ¬A so_apply: x[s] all: x:A. B[x] injection: A →⟶ B int_seg: {i..j-} infix_ap: y true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) or: P ∨ Q sq_type: SQType(T) eq_int: (i =z j) bnot: ¬bb ifthenelse: if then else fi  btrue: tt bfalse: ff permutation: permutation(T;L1;L2) exists: x:A. B[x] cand: c∧ B compose: g flip: (i, j) bool: 𝔹 unit: Unit it: matrix-ap: M[i,j] matrix-swap-rows: matrix-swap-rows(M;i;j) mx: matrix(M[x; y]) assert: b let: let
Lemmas referenced :  rng_lsum-split int_seg_wf eq_int_wf permutation-sign_wf equal-wf-base int_subtype_base let_wf rng_car_wf rng_minus_wf rng_prod_wf matrix-ap_wf permutations-list_wf subtype_rel_set list_wf injection_wf no_repeats_wf all_wf l_member_wf subtype_rel_list not_wf equal_wf matrix_wf matrix-swap-rows_wf nat_wf crng_wf rng_plus_wf rng_lsum_wf filter_wf5 bnot_wf rng_zero_wf squash_wf true_wf rng_plus_comm subtype_rel_self rng_plus_inv iff_weakening_equal compose_wf flip_wf rng_minus_lsum rng_lsum_map rng_lsum_functionality_wrt_permutation map_wf inject_wf compose_wf-injection flip-injection set_wf map-filter bool_wf permutation-sign-compose sign-flip absval_cases false_wf le_wf subtype_base_sq bfalse_wf btrue_wf filter_functionality_wrt_permutation flip-permutes-permutations-list length_wf_nat permute_list_wf length_wf rng_wf rng_prod_injection eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int set_subtype_base lelt_wf rng_minus_minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination functionEquality natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality hypothesisEquality applyEquality setEquality intEquality sqequalRule baseApply closedConclusion baseClosed int_eqEquality productEquality independent_isectElimination equalityTransitivity isect_memberEquality axiomEquality equalitySymmetry hyp_replacement applyLambdaEquality imageElimination universeEquality imageMemberEquality instantiate independent_functionElimination dependent_functionElimination lambdaFormation dependent_set_memberEquality functionExtensionality multiplyEquality independent_pairFormation unionElimination cumulativity dependent_pairFormation promote_hyp minusEquality equalityElimination int_eqReduceTrueSq voidElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i,j:\mBbbN{}n].
    |M|  =  0  supposing  (\mneg{}(i  =  j))  \mwedge{}  (matrix-swap-rows(M;i;j)  =  M)



Date html generated: 2018_05_21-PM-09_36_13
Last ObjectModification: 2018_05_19-PM-04_25_26

Theory : matrices


Home Index