Nuprl Lemma : det-equal-rows
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i,j:ℕn].
  |M| = 0 ∈ |r| supposing (¬(i = j ∈ ℤ)) ∧ (matrix-swap-rows(M;i;j) = M ∈ Matrix(n;n;r))
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
matrix-det: |M|
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
crng: CRng
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
injection: A →⟶ B
, 
int_seg: {i..j-}
, 
infix_ap: x f y
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
eq_int: (i =z j)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
permutation: permutation(T;L1;L2)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
compose: f o g
, 
flip: (i, j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
matrix-ap: M[i,j]
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
, 
mx: matrix(M[x; y])
, 
assert: ↑b
, 
let: let
Lemmas referenced : 
rng_lsum-split, 
int_seg_wf, 
eq_int_wf, 
permutation-sign_wf, 
equal-wf-base, 
int_subtype_base, 
let_wf, 
rng_car_wf, 
rng_minus_wf, 
rng_prod_wf, 
matrix-ap_wf, 
permutations-list_wf, 
subtype_rel_set, 
list_wf, 
injection_wf, 
no_repeats_wf, 
all_wf, 
l_member_wf, 
subtype_rel_list, 
not_wf, 
equal_wf, 
matrix_wf, 
matrix-swap-rows_wf, 
nat_wf, 
crng_wf, 
rng_plus_wf, 
rng_lsum_wf, 
filter_wf5, 
bnot_wf, 
rng_zero_wf, 
squash_wf, 
true_wf, 
rng_plus_comm, 
subtype_rel_self, 
rng_plus_inv, 
iff_weakening_equal, 
compose_wf, 
flip_wf, 
rng_minus_lsum, 
rng_lsum_map, 
rng_lsum_functionality_wrt_permutation, 
map_wf, 
inject_wf, 
compose_wf-injection, 
flip-injection, 
set_wf, 
map-filter, 
bool_wf, 
permutation-sign-compose, 
sign-flip, 
absval_cases, 
false_wf, 
le_wf, 
subtype_base_sq, 
bfalse_wf, 
btrue_wf, 
filter_functionality_wrt_permutation, 
flip-permutes-permutations-list, 
length_wf_nat, 
permute_list_wf, 
length_wf, 
rng_wf, 
rng_prod_injection, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
set_subtype_base, 
lelt_wf, 
rng_minus_minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
setEquality, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
int_eqEquality, 
productEquality, 
independent_isectElimination, 
equalityTransitivity, 
isect_memberEquality, 
axiomEquality, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
multiplyEquality, 
independent_pairFormation, 
unionElimination, 
cumulativity, 
dependent_pairFormation, 
promote_hyp, 
minusEquality, 
equalityElimination, 
int_eqReduceTrueSq, 
voidElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i,j:\mBbbN{}n].
    |M|  =  0  supposing  (\mneg{}(i  =  j))  \mwedge{}  (matrix-swap-rows(M;i;j)  =  M)
Date html generated:
2018_05_21-PM-09_36_13
Last ObjectModification:
2018_05_19-PM-04_25_26
Theory : matrices
Home
Index