Nuprl Lemma : flip-permutes-permutations-list
∀n:ℕ. ∀i,j:ℕn.  permutation({p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} permutations-list(n);map(λf.(f o (i, j));permutations-list(n)))
Proof
Definitions occuring in Statement : 
permutations-list: permutations-list(n)
, 
permutation: permutation(T;L1;L2)
, 
flip: (i, j)
, 
map: map(f;as)
, 
inject: Inj(A;B;f)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
injection: A →⟶ B
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
uimplies: b supposing a
, 
compose: f o g
, 
label: ...$L... t
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
Lemmas referenced : 
permutation-of-permutations-list, 
inject_wf, 
int_seg_wf, 
compose_wf-injection, 
flip-injection, 
flip_wf, 
subtype_rel_self, 
istype-nat, 
compose_wf, 
inject-compose, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
flip_twice, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
iff_weakening_equal, 
sq_stable__inject
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
functionIsType, 
inhabitedIsType, 
closedConclusion, 
dependent_set_memberEquality_alt, 
universeIsType, 
applyEquality, 
sqequalRule, 
setEquality, 
functionEquality, 
setIsType, 
independent_functionElimination, 
equalityIstype, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
universeEquality, 
functionExtensionality_alt, 
productElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.
    permutation(\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ;permutations-list(n);
                            map(\mlambda{}f.(f  o  (i,  j));permutations-list(n)))
Date html generated:
2019_10_15-AM-11_21_55
Last ObjectModification:
2018_11_27-AM-00_31_09
Theory : general
Home
Index