Step
*
of Lemma
cross-product-equal-0
∀r:IntegDom{i}. ∀a,b:ℕ3 ⟶ |r|.
  ((∀x,y:|r|.  Dec(x = y ∈ |r|))
  
⇒ ((a x b) = 0 ∈ (ℕ3 ⟶ |r|)
     
⇐⇒ (a = 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (∃c1,c2:|r|. ((¬(c1 = 0 ∈ |r|)) ∧ (¬(c2 = 0 ∈ |r|)) ∧ ((c1*a) = (c2*b) ∈ (ℕ3 ⟶ |r|))))))
BY
{ (InstLemma `cross-product-equal-zero` [] THEN RepeatFor 4 ((ParallelLast' THENA Auto)) THEN Auto) }
1
1. r : IntegDom{i}
2. a : ℕ3 ⟶ |r|
3. b : ℕ3 ⟶ |r|
4. ∀x,y:|r|.  Dec(x = y ∈ |r|)
5. ((a x b) = 0 ∈ (ℕ3 ⟶ |r|)) 
⇐ (a = 0 ∈ (ℕ3 ⟶ |r|))
∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
∨ (∃i:ℕ3. ((¬((b i) = 0 ∈ |r|)) ∧ (¬((a i) = 0 ∈ |r|)) ∧ ((b i*a) = (a i*b) ∈ (ℕ3 ⟶ |r|))))
6. (a x b) = 0 ∈ (ℕ3 ⟶ |r|)
7. (a = 0 ∈ (ℕ3 ⟶ |r|))
∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
∨ (∃i:ℕ3. ((¬((b i) = 0 ∈ |r|)) ∧ (¬((a i) = 0 ∈ |r|)) ∧ ((b i*a) = (a i*b) ∈ (ℕ3 ⟶ |r|))))
⊢ (a = 0 ∈ (ℕ3 ⟶ |r|))
∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
∨ (∃c1,c2:|r|. ((¬(c1 = 0 ∈ |r|)) ∧ (¬(c2 = 0 ∈ |r|)) ∧ ((c1*a) = (c2*b) ∈ (ℕ3 ⟶ |r|))))
2
1. r : IntegDom{i}
2. a : ℕ3 ⟶ |r|
3. b : ℕ3 ⟶ |r|
4. ∀x,y:|r|.  Dec(x = y ∈ |r|)
5. ((a x b) = 0 ∈ (ℕ3 ⟶ |r|))
⇒ ((a = 0 ∈ (ℕ3 ⟶ |r|))
   ∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
   ∨ (∃i:ℕ3. ((¬((b i) = 0 ∈ |r|)) ∧ (¬((a i) = 0 ∈ |r|)) ∧ ((b i*a) = (a i*b) ∈ (ℕ3 ⟶ |r|)))))
6. ((a x b) = 0 ∈ (ℕ3 ⟶ |r|)) 
⇐ (a = 0 ∈ (ℕ3 ⟶ |r|))
∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
∨ (∃i:ℕ3. ((¬((b i) = 0 ∈ |r|)) ∧ (¬((a i) = 0 ∈ |r|)) ∧ ((b i*a) = (a i*b) ∈ (ℕ3 ⟶ |r|))))
7. (a = 0 ∈ (ℕ3 ⟶ |r|))
∨ (b = 0 ∈ (ℕ3 ⟶ |r|))
∨ (∃c1,c2:|r|. ((¬(c1 = 0 ∈ |r|)) ∧ (¬(c2 = 0 ∈ |r|)) ∧ ((c1*a) = (c2*b) ∈ (ℕ3 ⟶ |r|))))
⊢ (a x b) = 0 ∈ (ℕ3 ⟶ |r|)
Latex:
Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}a,b:\mBbbN{}3  {}\mrightarrow{}  |r|.
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  ((a  x  b)  =  0
          \mLeftarrow{}{}\mRightarrow{}  (a  =  0)  \mvee{}  (b  =  0)  \mvee{}  (\mexists{}c1,c2:|r|.  ((\mneg{}(c1  =  0))  \mwedge{}  (\mneg{}(c2  =  0))  \mwedge{}  ((c1*a)  =  (c2*b))))))
By
Latex:
(InstLemma  `cross-product-equal-zero`  []  THEN  RepeatFor  4  ((ParallelLast'  THENA  Auto))  THEN  Auto)
Home
Index