Nuprl Lemma : cross-product-equal-0

r:IntegDom{i}. ∀a,b:ℕ3 ⟶ |r|.
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   ((a b) 0 ∈ (ℕ3 ⟶ |r|)
     ⇐⇒ (a 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (b 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (∃c1,c2:|r|. ((¬(c1 0 ∈ |r|)) ∧ (c2 0 ∈ |r|)) ∧ ((c1*a) (c2*b) ∈ (ℕ3 ⟶ |r|))))))


Proof




Definitions occuring in Statement :  cross-product: (a b) zero-vector: 0 vector-mul: (c*a) int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q rng: Rng crng: CRng integ_dom: IntegDom{i} uall: [x:A]. B[x] prop: and: P ∧ Q iff: ⇐⇒ Q implies:  Q member: t ∈ T all: x:A. B[x] exists: x:A. B[x] guard: {T} or: P ∨ Q cand: c∧ B uimplies: supposing a subtype_rel: A ⊆B true: True squash: T vector-mul: (c*a) zero-vector: 0 not: ¬A integ_dom_p: IsIntegDom(r) infix_ap: y
Lemmas referenced :  integ_dom_wf decidable_wf all_wf vector-mul_wf rng_zero_wf not_wf exists_wf or_wf zero-vector_wf cross-product_wf rng_car_wf int_seg_wf equal_wf cross-product-equal-zero iff_weakening_equal true_wf squash_wf cross-product-same rng_sig_wf cross-product-mul1 cross-product-mul2 vector-mul-mul rng_times_wf crng_times_comm
Rules used in proof :  productEquality lambdaEquality sqequalRule because_Cache applyEquality functionExtensionality rename setElimination natural_numberEquality functionEquality isectElimination independent_pairFormation productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut inrFormation equalitySymmetry equalityTransitivity inlFormation unionElimination dependent_pairFormation independent_isectElimination baseClosed imageMemberEquality levelHypothesis equalityUniverse universeEquality imageElimination cumulativity applyLambdaEquality

Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}a,b:\mBbbN{}3  {}\mrightarrow{}  |r|.
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  ((a  x  b)  =  0
          \mLeftarrow{}{}\mRightarrow{}  (a  =  0)  \mvee{}  (b  =  0)  \mvee{}  (\mexists{}c1,c2:|r|.  ((\mneg{}(c1  =  0))  \mwedge{}  (\mneg{}(c2  =  0))  \mwedge{}  ((c1*a)  =  (c2*b))))))



Date html generated: 2018_05_21-PM-09_41_48
Last ObjectModification: 2017_12_22-AM-01_35_22

Theory : matrices


Home Index