Nuprl Lemma : cross-product-equal-zero

r:IntegDom{i}. ∀a,b:ℕ3 ⟶ |r|.
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   ((a b) 0 ∈ (ℕ3 ⟶ |r|)
     ⇐⇒ (a 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (b 0 ∈ (ℕ3 ⟶ |r|))
         ∨ (∃i:ℕ3. ((¬((b i) 0 ∈ |r|)) ∧ ((a i) 0 ∈ |r|)) ∧ ((b i*a) (a i*b) ∈ (ℕ3 ⟶ |r|))))))


Proof




Definitions occuring in Statement :  cross-product: (a b) zero-vector: 0 vector-mul: (c*a) int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] integ_dom: IntegDom{i} crng: CRng rng: Rng rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y squash: T zero-vector: 0 true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b cross-product: (a b) select: L[n] cons: [a b] subtract: m sq_stable: SqStable(P) integ_dom_p: IsIntegDom(r) decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top cand: c∧ B vector-mul: (c*a) uiff: uiff(P;Q) ringeq_int_terms: t1 ≡ t2 nequal: a ≠ b ∈ 
Lemmas referenced :  equal_wf int_seg_wf rng_car_wf cross-product_wf zero-vector_wf or_wf exists_wf not_wf rng_zero_wf vector-mul_wf all_wf decidable_wf integ_dom_wf rng_plus_wf rng_minus_wf trivial-equal iff_weakening_equal false_wf lelt_wf infix_ap_wf rng_times_wf squash_wf true_wf rng_plus_assoc subtype_rel_self rng_plus_comm rng_plus_inv rng_plus_zero sq_stable__integ_dom_p rng_times_zero decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf crng_times_comm itermAdd_wf itermMultiply_wf itermMinus_wf ringeq-iff-rsub-is-0 ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_mul_lemma ring_term_value_var_lemma ring_term_value_const_lemma int-to-ring-zero ring_term_value_minus_lemma intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma cross-product-0 rng_sig_wf cross-product-anti-comm rng_one_wf mul-zero-vector cross-product-same cross-product-mul1 cross-product-mul2 vector-mul-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality hypothesis setElimination rename hypothesisEquality because_Cache sqequalRule lambdaEquality productEquality applyEquality applyLambdaEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination dependent_functionElimination dependent_set_memberEquality functionExtensionality universeEquality instantiate unionElimination hyp_replacement inlFormation cumulativity intEquality hypothesis_subsumption addEquality approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality inrFormation equalityUniverse levelHypothesis

Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}a,b:\mBbbN{}3  {}\mrightarrow{}  |r|.
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  ((a  x  b)  =  0
          \mLeftarrow{}{}\mRightarrow{}  (a  =  0)  \mvee{}  (b  =  0)  \mvee{}  (\mexists{}i:\mBbbN{}3.  ((\mneg{}((b  i)  =  0))  \mwedge{}  (\mneg{}((a  i)  =  0))  \mwedge{}  ((b  i*a)  =  (a  i*b))))))



Date html generated: 2018_05_21-PM-09_41_41
Last ObjectModification: 2018_05_19-PM-04_34_09

Theory : matrices


Home Index