Nuprl Lemma : mul-zero-vector
∀[i:Type]. ∀[r:Rng]. ∀[c:|r|].  ((c*0) = 0 ∈ (i ⟶ |r|))
Proof
Definitions occuring in Statement : 
zero-vector: 0
, 
vector-mul: (c*a)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
rng: Rng
, 
and: P ∧ Q
, 
vector-mul: (c*a)
, 
zero-vector: 0
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_car_wf, 
rng_times_zero
Rules used in proof : 
universeEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
rename, 
setElimination, 
hypothesis, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i:Type].  \mforall{}[r:Rng].  \mforall{}[c:|r|].    ((c*0)  =  0)
Date html generated:
2018_05_21-PM-09_40_46
Last ObjectModification:
2018_01_09-PM-01_00_31
Theory : matrices
Home
Index