Nuprl Lemma : mul-zero-vector

[i:Type]. ∀[r:Rng]. ∀[c:|r|].  ((c*0) 0 ∈ (i ⟶ |r|))


Proof




Definitions occuring in Statement :  zero-vector: 0 vector-mul: (c*a) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  rng: Rng and: P ∧ Q vector-mul: (c*a) zero-vector: 0 member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_car_wf rng_times_zero
Rules used in proof :  universeEquality because_Cache axiomEquality isect_memberEquality rename setElimination hypothesis productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule functionExtensionality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:Type].  \mforall{}[r:Rng].  \mforall{}[c:|r|].    ((c*0)  =  0)



Date html generated: 2018_05_21-PM-09_40_46
Last ObjectModification: 2018_01_09-PM-01_00_31

Theory : matrices


Home Index