Nuprl Lemma : det-row-op

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a,b:ℕn]. ∀[k:|r|].  |row-op(r;a;b;k;M)| |M| ∈ |r| supposing ¬(a b ∈ ℤ)


Proof




Definitions occuring in Statement :  row-op: row-op(r;a;b;k;M) matrix-det: |M| matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n int: equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  crng: CRng member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf nat_wf matrix-det-is-det-fun det-fun-row-op
Rules used in proof :  sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a,b:\mBbbN{}n].  \mforall{}[k:|r|].
    |row-op(r;a;b;k;M)|  =  |M|  supposing  \mneg{}(a  =  b)



Date html generated: 2018_05_21-PM-09_37_05
Last ObjectModification: 2018_01_02-PM-00_55_46

Theory : matrices


Home Index