Nuprl Lemma : det-row-op
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a,b:ℕn]. ∀[k:|r|].  |row-op(r;a;b;k;M)| = |M| ∈ |r| supposing ¬(a = b ∈ ℤ)
Proof
Definitions occuring in Statement : 
row-op: row-op(r;a;b;k;M)
, 
matrix-det: |M|
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
crng: CRng
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix-det-is-det-fun, 
det-fun-row-op
Rules used in proof : 
sqequalRule, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a,b:\mBbbN{}n].  \mforall{}[k:|r|].
    |row-op(r;a;b;k;M)|  =  |M|  supposing  \mneg{}(a  =  b)
Date html generated:
2018_05_21-PM-09_37_05
Last ObjectModification:
2018_01_02-PM-00_55_46
Theory : matrices
Home
Index