Nuprl Lemma : mul-row-is-transpose-mul-col
∀[M,r,i,k:Top].  (matrix-mul-row(r;k;i;M) ~ matrix-mul-col(r;k;i;M')')
Proof
Definitions occuring in Statement : 
matrix-mul-row: matrix-mul-row(r;k;i;M)
, 
matrix-mul-col: matrix-mul-col(r;k;i;M)
, 
matrix-transpose: M'
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
matrix-mul-row: matrix-mul-row(r;k;i;M)
, 
matrix-mul-col: matrix-mul-col(r;k;i;M)
, 
matrix-transpose: M'
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[M,r,i,k:Top].    (matrix-mul-row(r;k;i;M)  \msim{}  matrix-mul-col(r;k;i;M')')
Date html generated:
2018_05_21-PM-09_36_22
Last ObjectModification:
2017_12_11-PM-04_25_12
Theory : matrices
Home
Index