Nuprl Lemma : transpose-matrix-minor
∀[i,j,M:Top].  (matrix-minor(i;j;M)' ~ matrix-minor(j;i;M'))
Proof
Definitions occuring in Statement : 
matrix-minor: matrix-minor(i;j;m)
, 
matrix-transpose: M'
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mx: matrix(M[x; y])
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
matrix-minor: matrix-minor(i;j;m)
, 
matrix-transpose: M'
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
matrix_ap_mx_lemma
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
isectElimination, 
sqequalAxiom, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i,j,M:Top].    (matrix-minor(i;j;M)'  \msim{}  matrix-minor(j;i;M'))
Date html generated:
2018_05_21-PM-09_37_22
Last ObjectModification:
2017_12_14-PM-00_26_06
Theory : matrices
Home
Index