Nuprl Lemma : transpose-scalar-mul
∀[r,k,M:Top].  (k*M' ~ k*M')
Proof
Definitions occuring in Statement : 
matrix-scalar-mul: k*M
, 
matrix-transpose: M'
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
matrix-scalar-mul: k*M
, 
matrix-transpose: M'
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
matrix_ap_mx_lemma
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
isectElimination, 
sqequalAxiom, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r,k,M:Top].    (k*M'  \msim{}  k*M')
Date html generated:
2018_05_21-PM-09_38_35
Last ObjectModification:
2017_12_14-PM-00_03_15
Theory : matrices
Home
Index