Step
*
2
1
2
of Lemma
per-close_wf
.....eq aux.....
1. Term : Type
2. Term ⊆r Base
3. EQ : Term ⟶ Term ⟶ Term ⟶ Term
4. ts : candidate-type-system{i:l, i:l}(Term)
5. T : Term
6. T' : Term
7. eq : term-equality{i:l}(Term)
8. x : (candidate-type-system{i:l, i:l}(Term) × Term × Term × term-equality{i:l}(Term)) ⟶ 𝕌'
9. y : (candidate-type-system{i:l, i:l}(Term) × Term × Term × term-equality{i:l}(Term)) ⟶ 𝕌'
10. z : ∀c:candidate-type-system{i:l, i:l}(Term) × Term × Term × term-equality{i:l}(Term). ((x c) ⊆r (y c))
11. c1 : candidate-type-system{i:l, i:l}(Term)@i'
12. c3 : Term@i'
13. c5 : Term@i'
14. c6 : term-equality{i:l}(Term)@i'
⊢ (c1 c3 c5 c6) ∨ per-eq-def{i:l}(Term;EQ;λT,T',eq. (x <c1, T, T', eq>);c3;c5;c6) ∈ 𝕌'
BY
{ Auto }
Latex:
Latex:
.....eq aux.....
1. Term : Type
2. Term \msubseteq{}r Base
3. EQ : Term {}\mrightarrow{} Term {}\mrightarrow{} Term {}\mrightarrow{} Term
4. ts : candidate-type-system\{i:l, i:l\}(Term)
5. T : Term
6. T' : Term
7. eq : term-equality\{i:l\}(Term)
8. x : (candidate-type-system\{i:l, i:l\}(Term) \mtimes{} Term \mtimes{} Term \mtimes{} term-equality\{i:l\}(Term)) {}\mrightarrow{} \mBbbU{}'
9. y : (candidate-type-system\{i:l, i:l\}(Term) \mtimes{} Term \mtimes{} Term \mtimes{} term-equality\{i:l\}(Term)) {}\mrightarrow{} \mBbbU{}'
10. z : \mforall{}c:candidate-type-system\{i:l, i:l\}(Term) \mtimes{} Term \mtimes{} Term \mtimes{} term-equality\{i:l\}(Term)
((x c) \msubseteq{}r (y c))
11. c1 : candidate-type-system\{i:l, i:l\}(Term)@i'
12. c3 : Term@i'
13. c5 : Term@i'
14. c6 : term-equality\{i:l\}(Term)@i'
\mvdash{} (c1 c3 c5 c6) \mvee{} per-eq-def\{i:l\}(Term;EQ;\mlambda{}T,T',eq. (x <c1, T, T', eq>);c3;c5;c6) \mmember{} \mBbbU{}'
By
Latex:
Auto
Home
Index