Nuprl Lemma : per-close_wf

[Term:{T:Type| T ⊆Base} ]. ∀[EQ:Term ⟶ Term ⟶ Term ⟶ Term]. ∀[ts:candidate-type-system{i:l, i:l}(Term)].
[T,T':Term]. ∀[eq:term-equality{i:l}(Term)].
  (per-close{i:l}(Term;EQ;ts;T;T';eq) ∈ 𝕌')


Proof




Definitions occuring in Statement :  per-close: per-close{i:l}(Term;EQ;ts;T;T';eq) candidate-type-system: candidate-type-system{i:l,j:l}(Term) term-equality: term-equality{i:l}(Term) subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-close: per-close{i:l}(Term;EQ;ts;T;T';eq) or: P ∨ Q uimplies: supposing a subtype_rel: A ⊆B candidate-type-system: candidate-type-system{i:l,j:l}(Term) prop: spreadn: spread4 all: x:A. B[x] and: P ∧ Q exists: x:A. B[x] per-eq-def: per-eq-def{i:l}(Term;EQ;ts;T;T';eq) guard: {T} implies:  Q rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] term-equality: term-equality{i:l}(Term) so_lambda: λ2x.t[x]
Lemmas referenced :  term-equality_wf candidate-type-system_wf istype-universe subtype_rel_wf base_wf subtype_rel_product per-computes-to_wf all_wf iff_wf subtype_base_sq or_wf per-eq-def_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut setElimination thin rename sqequalRule parameterizedRecEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate functionIsType because_Cache setIsType universeEquality productEquality independent_isectElimination functionEquality independent_pairEquality applyEquality cumulativity lemma_by_obid productElimination lambdaEquality lambdaFormation unionElimination inlEquality inrEquality dependent_functionElimination sqequalIntensionalEquality dependent_set_memberEquality dependent_pairEquality

Latex:
\mforall{}[Term:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[EQ:Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term].  \mforall{}[ts:candidate-type-system\{i:l,
                                                                                                                                                                                          i:l\}
                                                                                                                                                  (Term)].  \mforall{}[T,T':Term].
\mforall{}[eq:term-equality\{i:l\}(Term)].
    (per-close\{i:l\}(Term;EQ;ts;T;T';eq)  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_20-AM-07_47_58
Last ObjectModification: 2020_01_25-AM-09_35_26

Theory : parameterized!rec


Home Index