Nuprl Lemma : per-computes-to_wf

[Term:{T:Type| T ⊆Base} ]. ∀[a,b:Term].  (per-computes-to(Term;a;b) ∈ Type)


Proof




Definitions occuring in Statement :  per-computes-to: per-computes-to(Term;a;b) subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-computes-to: per-computes-to(Term;a;b) uimplies: supposing a
Lemmas referenced :  subtype_base_sq subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule sqequalIntensionalEquality instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality independent_isectElimination hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality setEquality universeEquality

Latex:
\mforall{}[Term:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[a,b:Term].    (per-computes-to(Term;a;b)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-01_49_08
Last ObjectModification: 2015_12_27-AM-00_11_57

Theory : parameterized!rec


Home Index