Nuprl Lemma : per-computes-to_wf
∀[Term:{T:Type| T ⊆r Base} ]. ∀[a,b:Term]. (per-computes-to(Term;a;b) ∈ Type)
Proof
Definitions occuring in Statement :
per-computes-to: per-computes-to(Term;a;b)
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
base: Base
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
per-computes-to: per-computes-to(Term;a;b)
,
uimplies: b supposing a
Lemmas referenced :
subtype_base_sq,
subtype_rel_wf,
base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
setElimination,
thin,
rename,
sqequalRule,
sqequalIntensionalEquality,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
independent_isectElimination,
hypothesis,
because_Cache,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
setEquality,
universeEquality
Latex:
\mforall{}[Term:\{T:Type| T \msubseteq{}r Base\} ]. \mforall{}[a,b:Term]. (per-computes-to(Term;a;b) \mmember{} Type)
Date html generated:
2016_05_15-PM-01_49_08
Last ObjectModification:
2015_12_27-AM-00_11_57
Theory : parameterized!rec
Home
Index