Nuprl Lemma : per-computes-to_wf
∀[Term:{T:Type| T ⊆r Base} ]. ∀[a,b:Term].  (per-computes-to(Term;a;b) ∈ Type)
Proof
Definitions occuring in Statement : 
per-computes-to: per-computes-to(Term;a;b)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-computes-to: per-computes-to(Term;a;b)
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_base_sq, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalIntensionalEquality, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
setEquality, 
universeEquality
Latex:
\mforall{}[Term:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[a,b:Term].    (per-computes-to(Term;a;b)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-01_49_08
Last ObjectModification:
2015_12_27-AM-00_11_57
Theory : parameterized!rec
Home
Index