Nuprl Lemma : per-eq-def_wf

[Term:Type]. ∀[EQ:Term ⟶ Term ⟶ Term ⟶ Term]. ∀[ts:candidate-type-system{i:l, i':l}(Term)]. ∀[T,T':Term].
[eq:term-equality{i:l}(Term)].
  per-eq-def{i:l}(Term;EQ;ts;T;T';eq) ∈ 𝕌supposing Term ⊆Base


Proof




Definitions occuring in Statement :  per-eq-def: per-eq-def{i:l}(Term;EQ;ts;T;T';eq) candidate-type-system: candidate-type-system{i:l,j:l}(Term) term-equality: term-equality{i:l}(Term) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a per-eq-def: per-eq-def{i:l}(Term;EQ;ts;T;T';eq) member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B candidate-type-system: candidate-type-system{i:l,j:l}(Term) term-equality: term-equality{i:l}(Term) so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] exists: x:A. B[x] rev_implies:  Q implies:  Q
Lemmas referenced :  exists_wf term-equality_wf per-computes-to_wf subtype_rel_wf base_wf all_wf iff_wf subtype_base_sq candidate-type-system_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality because_Cache hypothesis productEquality dependent_set_memberEquality applyEquality universeEquality sqequalIntensionalEquality independent_isectElimination functionEquality

Latex:
\mforall{}[Term:Type].  \mforall{}[EQ:Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term].  \mforall{}[ts:candidate-type-system\{i:l,  i':l\}(Term)].
\mforall{}[T,T':Term].  \mforall{}[eq:term-equality\{i:l\}(Term)].
    per-eq-def\{i:l\}(Term;EQ;ts;T;T';eq)  \mmember{}  \mBbbU{}'  supposing  Term  \msubseteq{}r  Base



Date html generated: 2016_05_15-PM-01_49_11
Last ObjectModification: 2015_12_27-AM-00_11_57

Theory : parameterized!rec


Home Index