Nuprl Lemma : per-eq-def_wf
∀[Term:Type]. ∀[EQ:Term ⟶ Term ⟶ Term ⟶ Term]. ∀[ts:candidate-type-system{i:l, i':l}(Term)]. ∀[T,T':Term].
∀[eq:term-equality{i:l}(Term)].
  per-eq-def{i:l}(Term;EQ;ts;T;T';eq) ∈ 𝕌' supposing Term ⊆r Base
Proof
Definitions occuring in Statement : 
per-eq-def: per-eq-def{i:l}(Term;EQ;ts;T;T';eq)
, 
candidate-type-system: candidate-type-system{i:l,j:l}(Term)
, 
term-equality: term-equality{i:l}(Term)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
per-eq-def: per-eq-def{i:l}(Term;EQ;ts;T;T';eq)
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
candidate-type-system: candidate-type-system{i:l,j:l}(Term)
, 
term-equality: term-equality{i:l}(Term)
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
exists_wf, 
term-equality_wf, 
per-computes-to_wf, 
subtype_rel_wf, 
base_wf, 
all_wf, 
iff_wf, 
subtype_base_sq, 
candidate-type-system_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
hypothesis, 
productEquality, 
dependent_set_memberEquality, 
applyEquality, 
universeEquality, 
sqequalIntensionalEquality, 
independent_isectElimination, 
functionEquality
Latex:
\mforall{}[Term:Type].  \mforall{}[EQ:Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term  {}\mrightarrow{}  Term].  \mforall{}[ts:candidate-type-system\{i:l,  i':l\}(Term)].
\mforall{}[T,T':Term].  \mforall{}[eq:term-equality\{i:l\}(Term)].
    per-eq-def\{i:l\}(Term;EQ;ts;T;T';eq)  \mmember{}  \mBbbU{}'  supposing  Term  \msubseteq{}r  Base
Date html generated:
2016_05_15-PM-01_49_11
Last ObjectModification:
2015_12_27-AM-00_11_57
Theory : parameterized!rec
Home
Index