Step
*
1
3
of Lemma
KozenSilva-lemma
1. r : CRng
2. x : Atom
3. y : Atom
4. h : PowerSeries(r)
5. n : ℕ
6. m : ℕ
7. n ≤ m
8. ¬(x = y ∈ Atom)
9. fps-ucont(Atom;AtomDeq;r;f.[([f]_n(y:=1)*Δ(x,y))]_m)
10. fps-ucont(Atom;AtomDeq;r;f.([f]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)))
11. f : PowerSeries(r)
12. g : PowerSeries(r)
⊢ [([(f+g)]_n(y:=1)*Δ(x,y))]_m = ([([f]_n(y:=1)*Δ(x,y))]_m+[([g]_n(y:=1)*Δ(x,y))]_m) ∈ PowerSeries(r)
BY
{ xxx((RWO "fps-set-to-one-add" 0 THENA Auto) THEN FpsNorm 0 THEN Auto THEN RWO "fps-add-slice" 0 THEN Auto)xxx }
Latex:
Latex:
1.  r  :  CRng
2.  x  :  Atom
3.  y  :  Atom
4.  h  :  PowerSeries(r)
5.  n  :  \mBbbN{}
6.  m  :  \mBbbN{}
7.  n  \mleq{}  m
8.  \mneg{}(x  =  y)
9.  fps-ucont(Atom;AtomDeq;r;f.[([f]\_n(y:=1)*\mDelta{}(x,y))]\_m)
10.  fps-ucont(Atom;AtomDeq;r;f.([f]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n)))
11.  f  :  PowerSeries(r)
12.  g  :  PowerSeries(r)
\mvdash{}  [([(f+g)]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([([f]\_n(y:=1)*\mDelta{}(x,y))]\_m+[([g]\_n(y:=1)*\mDelta{}(x,y))]\_m)
By
Latex:
xxx((RWO  "fps-set-to-one-add"  0  THENA  Auto)
        THEN  FpsNorm  0
        THEN  Auto
        THEN  RWO  "fps-add-slice"  0
        THEN  Auto)xxx
Home
Index