Nuprl Lemma : KozenSilva-lemma

[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[n,m:ℕ].
  [([h]_n(y:=1)*Δ(x,y))]_m ([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m n)) ∈ PowerSeries(r) 
  supposing (n ≤ m) ∧ (x y ∈ Atom))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-pascal: Δ(x,y) fps-compose: g(x:=f) fps-exp: (f)^(n) fps-slice: [f]_n fps-mul: (f*g) fps-add: (f+g) fps-atom: atom(x) power-series: PowerSeries(X;r) atom-deq: AtomDeq nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B not: ¬A and: P ∧ Q subtract: m atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top cand: c∧ B crng: CRng rng: Rng compose: g true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) comm: Comm(T;op) single-bag: {x} bag-filter: [x∈b|p[x]] int_seg: {i..j-} l_member!: (x ∈l) le: A ≤ B lelt: i ≤ j < k less_than: a < b rev_uimplies: rev_uimplies(P;Q) l_all: (∀x∈L.P[x]) fps-summation: fps-summation(r;b;x.f[x]) fps-atom: atom(x) nequal: a ≠ b ∈  empty-bag: {} fps-add: (f+g) fps-coeff: f[b] fps-single: <c> bag-eq: bag-eq(eq;as;bs) bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) lt_int: i <j band: p ∧b q fps-slice: [f]_n fps-mul: (f*g)
Lemmas referenced :  le_wf not_wf equal-wf-base atom_subtype_base nat_wf power-series_wf crng_wf fps-linear-ucont-equal atom-valueall-type atom-deq_wf fps-slice_wf fps-mul_wf fps-set-to-one_wf fps-pascal_wf fps-compose_wf fps-add_wf fps-atom_wf fps-exp_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf rng_car_wf bag_wf fps-ucont-composition fps-slice-ucont fps-mul-ucont fps-set-to-one-ucont fps-compose-ucont equal_wf fps-add-slice iff_weakening_equal squash_wf true_wf valueall-type_wf deq_wf fps-set-to-one-add mul_over_plus_fps mul_comm_fps fps-compose-add fps-set-to-one-scalar-mul fps-scalar-mul-slice fps-scalar-mul-property fps-scalar-mul_wf fps-compose-scalar-mul eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int fps-set-to-one-single fps-single-slice fps-mul-slice fps-single_wf bag-co-restrict_wf fps-zero_wf mon_assoc_fps abmonoid_comm_fps mon_ident_fps bag-restrict-size-bound fps-summation_wf filter_is_singleton upto_wf subtype_rel_list int_seg_wf length_upto itermAdd_wf int_term_value_add_lemma decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma select_upto non_neg_length length_wf_nat lelt_wf select_wf less_than_wf length_wf all_wf decidable__equal_int assert_wf int_seg_properties list-subtype-bag bag-summation-single fps-pascal-slice fps-compose-single rng_zero_wf reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma rng_plus_zero fps-mul-assoc bag-restrict_wf fps-exp-add bag-summation-filter bag-summation_wf bag-summation-equal bag-member_wf ifthenelse_wf mul_zero_fps fps-zero-slice fps-compose-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis productEquality extract_by_obid isectElimination setElimination rename hypothesisEquality atomEquality applyEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation independent_functionElimination imageElimination imageMemberEquality baseClosed universeEquality cumulativity equalityElimination promote_hyp instantiate independent_pairEquality hyp_replacement applyLambdaEquality addEquality functionEquality equalityUniverse levelHypothesis functionExtensionality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[h:PowerSeries(r)].  \mforall{}[n,m:\mBbbN{}].
    [([h]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n)) 
    supposing  (n  \mleq{}  m)  \mwedge{}  (\mneg{}(x  =  y))



Date html generated: 2018_05_21-PM-10_13_40
Last ObjectModification: 2017_07_26-PM-06_35_24

Theory : power!series


Home Index