Nuprl Lemma : fps-scalar-mul-property

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng].
    ((IsAction(|r|;*;1;PowerSeries(X;r);λc,f. (c)*f)
    ∧ IsBilinear(|r|;PowerSeries(X;r);PowerSeries(X;r);+r;λf,g. (f+g);λf,g. (f+g);λc,f. (c)*f))
    ∧ (∀c:|r|. Dist1op2opLR(PowerSeries(X;r);λf.(c)*f;λf,g. (f*g)))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-scalar-mul: (c)*f fps-mul: (f*g) fps-add: (f+g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q lambda: λx.A[x] universe: Type crng: CRng rng_one: 1 rng_times: * rng_plus: +r rng_car: |r| dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng comm: Comm(T;op) rng: Rng prop: and: P ∧ Q cand: c∧ B exists: x:A. B[x] action_p: IsAction(A;x;e;S;f) all: x:A. B[x] bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) infix_ap: y uiff: uiff(P;Q) fps-scalar-mul: (c)*f fps-coeff: f[b] fps-add: (f+g) fps-mul: (f*g) power-series: PowerSeries(X;r) true: True so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) so_apply: x[s] top: Top squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_plus_comm crng_properties rng_properties rng_all_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf group_p_wf crng_wf deq_wf valueall-type_wf power-series_wf fps-ext fps-scalar-mul_wf bag_wf fps-add_wf fps-mul_wf infix_ap_wf bag-summation_wf bag-partitions_wf pi1_wf_top pi2_wf equal_wf bag-summation-linear1-right iff_weakening_equal bag-summation-equal rng_times_assoc bag-member_wf squash_wf true_wf crng_times_comm crng_times_ac_1 rng_times_one rng_times_over_plus assoc_wf comm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality productElimination because_Cache independent_pairFormation dependent_pairFormation functionExtensionality applyEquality sqequalRule independent_pairEquality isect_memberEquality lambdaEquality dependent_functionElimination axiomEquality cumulativity equalityTransitivity equalitySymmetry universeEquality lambdaFormation independent_isectElimination natural_numberEquality productEquality voidElimination voidEquality imageElimination imageMemberEquality baseClosed independent_functionElimination functionEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].
        ((IsAction(|r|;*;1;PowerSeries(X;r);\mlambda{}c,f.  (c)*f)
        \mwedge{}  IsBilinear(|r|;PowerSeries(X;r);PowerSeries(X;r);+r;\mlambda{}f,g.  (f+g);\mlambda{}f,g.  (f+g);\mlambda{}c,f.  (c)*f))
        \mwedge{}  (\mforall{}c:|r|.  Dist1op2opLR(PowerSeries(X;r);\mlambda{}f.(c)*f;\mlambda{}f,g.  (f*g)))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_26
Last ObjectModification: 2017_07_26-PM-06_33_21

Theory : power!series


Home Index