Nuprl Lemma : fps-set-to-one_wf

[r:CRng]. ∀[f:PowerSeries(r)]. ∀[y:Atom]. ∀[n:ℕ].  ([f]_n(y:=1) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] member: t ∈ T atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-set-to-one: [f]_n(y:=1) subtype_rel: A ⊆B nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q prop: rev_implies:  Q crng: CRng rng: Rng bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bor: p ∨bq bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  bor_wf lt_int_wf bag-count_wf atom-deq_wf bag-size_wf bool_wf eqtt_to_assert iff_transitivity assert_wf or_wf less_than_wf iff_weakening_uiff assert_of_bor assert_of_lt_int rng_zero_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot fps-coeff_wf bag-append_wf bag-rep_wf subtract_wf nat_properties decidable__le nat_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf list-subtype-bag subtype_rel_self bag_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality atomEquality hypothesis hypothesisEquality applyEquality because_Cache setElimination rename lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination independent_functionElimination dependent_functionElimination independent_pairFormation orFunctionality dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity voidElimination dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll axiomEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[f:PowerSeries(r)].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([f]\_n(y:=1)  \mmember{}  PowerSeries(r))



Date html generated: 2018_05_21-PM-10_12_36
Last ObjectModification: 2017_07_26-PM-06_35_01

Theory : power!series


Home Index